Contribution of the Kir3.1 Subunit to the Muscarinic-gated Atrial Potassium Channel IKACh

The muscarinic-gated atrial potassium (I KACh ) channel contributes to the heart rate decrease triggered by the parasympathetic nervous system. I KACh is a heteromultimeric complex formed by Kir3.1 and Kir3.4 subunits, although Kir3.4 homomultimers have also been proposed to contribute to this condu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-12, Vol.277 (50), p.48282-48288
Hauptverfasser: Bettahi, Ilham, Marker, Cheryl L, Roman, Maria I, Wickman, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48288
container_issue 50
container_start_page 48282
container_title The Journal of biological chemistry
container_volume 277
creator Bettahi, Ilham
Marker, Cheryl L
Roman, Maria I
Wickman, Kevin
description The muscarinic-gated atrial potassium (I KACh ) channel contributes to the heart rate decrease triggered by the parasympathetic nervous system. I KACh is a heteromultimeric complex formed by Kir3.1 and Kir3.4 subunits, although Kir3.4 homomultimers have also been proposed to contribute to this conductance. While Kir3.4 homomultimers evince many properties of I KACh , the contribution of Kir3.1 to I KACh is less well understood. Here, we explored the significance of Kir3.1 using knock-out mice. Kir3.1 knock-out mice were viable and appeared normal. The loss of Kir3.1 did not affect the level of atrial Kir3.4 protein but was correlated with a loss of carbachol-induced current in atrial myocytes. Low level channel activity resembling recombinant Kir3.4 homomultimers was observed in 40% of the cell-attached patches from Kir3.1 knock-out myocytes. Channel activity typically ran down quickly, however, and was not recovered in the inside-out configuration despite the addition of GTP and ATP to the bath. Both Kir3.1 knock-out and Kir3.4 knock-out mice exhibited mild resting tachycardias and blunted responses to pharmacological manipulation intended to activate I KACh . We conclude that Kir3.1 confers properties to I KACh that enhance channel activity and that Kir3.4 homomultimers do not contribute significantly to the muscarinic-gated potassium current.
doi_str_mv 10.1074/jbc.M209599200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72760101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72760101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3410-1b259787388156fb1d77b8557fa335b3a684bce560a46195ca56a46423ff38453</originalsourceid><addsrcrecordid>eNpFkEtLxDAURoMoOj62LiULcdcxzyZdDsUXM4OCCroKSSa1GdpmTFrEf291Brybe7mc71scAM4xmmIk2PXa2OmSoIIXBUFoD0wwkjSjHL_tgwlCBGcF4fIIHKe0RuOwAh-CI0yoYELmE_Behq6P3gy9Dx0MFexrB-c-0imGz4MZOt_DPvx9l0OyOvrO2-xD924FZ2NQN_Ap9DolP7SwrHXXuQY-zGdlfQoOKt0kd7bbJ-D19ualvM8Wj3cP5WyRWcowyrAhvBBSUCkxzyuDV0IYybmoNKXcUJ1LZqzjOdIsxwW3mufjxQitKioZpyfgatu7ieFzcKlXrU_WNY3uXBiSEkTkCCM8gtMtaGNIKbpKbaJvdfxWGKlfmWqUqf5ljoGLXfNgWrf6x3f2RuByC9T-o_7y0Snjg61dq4gQiiPFJJGE_gACcnmK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72760101</pqid></control><display><type>article</type><title>Contribution of the Kir3.1 Subunit to the Muscarinic-gated Atrial Potassium Channel IKACh</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Bettahi, Ilham ; Marker, Cheryl L ; Roman, Maria I ; Wickman, Kevin</creator><creatorcontrib>Bettahi, Ilham ; Marker, Cheryl L ; Roman, Maria I ; Wickman, Kevin</creatorcontrib><description>The muscarinic-gated atrial potassium (I KACh ) channel contributes to the heart rate decrease triggered by the parasympathetic nervous system. I KACh is a heteromultimeric complex formed by Kir3.1 and Kir3.4 subunits, although Kir3.4 homomultimers have also been proposed to contribute to this conductance. While Kir3.4 homomultimers evince many properties of I KACh , the contribution of Kir3.1 to I KACh is less well understood. Here, we explored the significance of Kir3.1 using knock-out mice. Kir3.1 knock-out mice were viable and appeared normal. The loss of Kir3.1 did not affect the level of atrial Kir3.4 protein but was correlated with a loss of carbachol-induced current in atrial myocytes. Low level channel activity resembling recombinant Kir3.4 homomultimers was observed in 40% of the cell-attached patches from Kir3.1 knock-out myocytes. Channel activity typically ran down quickly, however, and was not recovered in the inside-out configuration despite the addition of GTP and ATP to the bath. Both Kir3.1 knock-out and Kir3.4 knock-out mice exhibited mild resting tachycardias and blunted responses to pharmacological manipulation intended to activate I KACh . We conclude that Kir3.1 confers properties to I KACh that enhance channel activity and that Kir3.4 homomultimers do not contribute significantly to the muscarinic-gated potassium current.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M209599200</identifier><identifier>PMID: 12374786</identifier><language>eng</language><publisher>United States: American Society for Biochemistry and Molecular Biology</publisher><subject>Amino Acid Sequence ; Animals ; G Protein-Coupled Inwardly-Rectifying Potassium Channels ; Heart Atria - metabolism ; Ion Channel Gating - physiology ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Potassium Channels - genetics ; Potassium Channels - physiology ; Potassium Channels, Inwardly Rectifying ; Receptors, Muscarinic - physiology</subject><ispartof>The Journal of biological chemistry, 2002-12, Vol.277 (50), p.48282-48288</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3410-1b259787388156fb1d77b8557fa335b3a684bce560a46195ca56a46423ff38453</citedby><cites>FETCH-LOGICAL-c3410-1b259787388156fb1d77b8557fa335b3a684bce560a46195ca56a46423ff38453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12374786$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bettahi, Ilham</creatorcontrib><creatorcontrib>Marker, Cheryl L</creatorcontrib><creatorcontrib>Roman, Maria I</creatorcontrib><creatorcontrib>Wickman, Kevin</creatorcontrib><title>Contribution of the Kir3.1 Subunit to the Muscarinic-gated Atrial Potassium Channel IKACh</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The muscarinic-gated atrial potassium (I KACh ) channel contributes to the heart rate decrease triggered by the parasympathetic nervous system. I KACh is a heteromultimeric complex formed by Kir3.1 and Kir3.4 subunits, although Kir3.4 homomultimers have also been proposed to contribute to this conductance. While Kir3.4 homomultimers evince many properties of I KACh , the contribution of Kir3.1 to I KACh is less well understood. Here, we explored the significance of Kir3.1 using knock-out mice. Kir3.1 knock-out mice were viable and appeared normal. The loss of Kir3.1 did not affect the level of atrial Kir3.4 protein but was correlated with a loss of carbachol-induced current in atrial myocytes. Low level channel activity resembling recombinant Kir3.4 homomultimers was observed in 40% of the cell-attached patches from Kir3.1 knock-out myocytes. Channel activity typically ran down quickly, however, and was not recovered in the inside-out configuration despite the addition of GTP and ATP to the bath. Both Kir3.1 knock-out and Kir3.4 knock-out mice exhibited mild resting tachycardias and blunted responses to pharmacological manipulation intended to activate I KACh . We conclude that Kir3.1 confers properties to I KACh that enhance channel activity and that Kir3.4 homomultimers do not contribute significantly to the muscarinic-gated potassium current.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>G Protein-Coupled Inwardly-Rectifying Potassium Channels</subject><subject>Heart Atria - metabolism</subject><subject>Ion Channel Gating - physiology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecular Sequence Data</subject><subject>Potassium Channels - genetics</subject><subject>Potassium Channels - physiology</subject><subject>Potassium Channels, Inwardly Rectifying</subject><subject>Receptors, Muscarinic - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkEtLxDAURoMoOj62LiULcdcxzyZdDsUXM4OCCroKSSa1GdpmTFrEf291Brybe7mc71scAM4xmmIk2PXa2OmSoIIXBUFoD0wwkjSjHL_tgwlCBGcF4fIIHKe0RuOwAh-CI0yoYELmE_Behq6P3gy9Dx0MFexrB-c-0imGz4MZOt_DPvx9l0OyOvrO2-xD924FZ2NQN_Ap9DolP7SwrHXXuQY-zGdlfQoOKt0kd7bbJ-D19ualvM8Wj3cP5WyRWcowyrAhvBBSUCkxzyuDV0IYybmoNKXcUJ1LZqzjOdIsxwW3mufjxQitKioZpyfgatu7ieFzcKlXrU_WNY3uXBiSEkTkCCM8gtMtaGNIKbpKbaJvdfxWGKlfmWqUqf5ljoGLXfNgWrf6x3f2RuByC9T-o_7y0Snjg61dq4gQiiPFJJGE_gACcnmK</recordid><startdate>20021213</startdate><enddate>20021213</enddate><creator>Bettahi, Ilham</creator><creator>Marker, Cheryl L</creator><creator>Roman, Maria I</creator><creator>Wickman, Kevin</creator><general>American Society for Biochemistry and Molecular Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20021213</creationdate><title>Contribution of the Kir3.1 Subunit to the Muscarinic-gated Atrial Potassium Channel IKACh</title><author>Bettahi, Ilham ; Marker, Cheryl L ; Roman, Maria I ; Wickman, Kevin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3410-1b259787388156fb1d77b8557fa335b3a684bce560a46195ca56a46423ff38453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>G Protein-Coupled Inwardly-Rectifying Potassium Channels</topic><topic>Heart Atria - metabolism</topic><topic>Ion Channel Gating - physiology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecular Sequence Data</topic><topic>Potassium Channels - genetics</topic><topic>Potassium Channels - physiology</topic><topic>Potassium Channels, Inwardly Rectifying</topic><topic>Receptors, Muscarinic - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bettahi, Ilham</creatorcontrib><creatorcontrib>Marker, Cheryl L</creatorcontrib><creatorcontrib>Roman, Maria I</creatorcontrib><creatorcontrib>Wickman, Kevin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bettahi, Ilham</au><au>Marker, Cheryl L</au><au>Roman, Maria I</au><au>Wickman, Kevin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contribution of the Kir3.1 Subunit to the Muscarinic-gated Atrial Potassium Channel IKACh</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2002-12-13</date><risdate>2002</risdate><volume>277</volume><issue>50</issue><spage>48282</spage><epage>48288</epage><pages>48282-48288</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The muscarinic-gated atrial potassium (I KACh ) channel contributes to the heart rate decrease triggered by the parasympathetic nervous system. I KACh is a heteromultimeric complex formed by Kir3.1 and Kir3.4 subunits, although Kir3.4 homomultimers have also been proposed to contribute to this conductance. While Kir3.4 homomultimers evince many properties of I KACh , the contribution of Kir3.1 to I KACh is less well understood. Here, we explored the significance of Kir3.1 using knock-out mice. Kir3.1 knock-out mice were viable and appeared normal. The loss of Kir3.1 did not affect the level of atrial Kir3.4 protein but was correlated with a loss of carbachol-induced current in atrial myocytes. Low level channel activity resembling recombinant Kir3.4 homomultimers was observed in 40% of the cell-attached patches from Kir3.1 knock-out myocytes. Channel activity typically ran down quickly, however, and was not recovered in the inside-out configuration despite the addition of GTP and ATP to the bath. Both Kir3.1 knock-out and Kir3.4 knock-out mice exhibited mild resting tachycardias and blunted responses to pharmacological manipulation intended to activate I KACh . We conclude that Kir3.1 confers properties to I KACh that enhance channel activity and that Kir3.4 homomultimers do not contribute significantly to the muscarinic-gated potassium current.</abstract><cop>United States</cop><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>12374786</pmid><doi>10.1074/jbc.M209599200</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2002-12, Vol.277 (50), p.48282-48288
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_72760101
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Amino Acid Sequence
Animals
G Protein-Coupled Inwardly-Rectifying Potassium Channels
Heart Atria - metabolism
Ion Channel Gating - physiology
Mice
Mice, Knockout
Molecular Sequence Data
Potassium Channels - genetics
Potassium Channels - physiology
Potassium Channels, Inwardly Rectifying
Receptors, Muscarinic - physiology
title Contribution of the Kir3.1 Subunit to the Muscarinic-gated Atrial Potassium Channel IKACh
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A05%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contribution%20of%20the%20Kir3.1%20Subunit%20to%20the%20Muscarinic-gated%20Atrial%20Potassium%20Channel%20IKACh&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Bettahi,%20Ilham&rft.date=2002-12-13&rft.volume=277&rft.issue=50&rft.spage=48282&rft.epage=48288&rft.pages=48282-48288&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M209599200&rft_dat=%3Cproquest_cross%3E72760101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72760101&rft_id=info:pmid/12374786&rfr_iscdi=true