Two Tarantula Peptides Inhibit Activation of Multiple Sodium Channels
Two peptides, ProTx-I and ProTx-II, from the venom of the tarantula Thrixopelma pruriens, have been isolated and characterized. These peptides were purified on the basis of their ability to reversibly inhibit the tetrodotoxin-resistant Na channel, NaV 1.8, and are shown to belong to the inhibitory c...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2002-12, Vol.41 (50), p.14734-14747 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14747 |
---|---|
container_issue | 50 |
container_start_page | 14734 |
container_title | Biochemistry (Easton) |
container_volume | 41 |
creator | Middleton, Richard E Warren, Vivien A Kraus, Richard L Hwang, Jeremy C Liu, Chou J Dai, Ge Brochu, Richard M Kohler, Martin G Gao, Ying-Duo Garsky, Victor M Bogusky, Michael J Mehl, John T Cohen, Charles J Smith, McHardy M |
description | Two peptides, ProTx-I and ProTx-II, from the venom of the tarantula Thrixopelma pruriens, have been isolated and characterized. These peptides were purified on the basis of their ability to reversibly inhibit the tetrodotoxin-resistant Na channel, NaV 1.8, and are shown to belong to the inhibitory cystine knot (ICK) family of peptide toxins interacting with voltage-gated ion channels. The family has several hallmarks: cystine bridge connectivity, mechanism of channel inhibition, and promiscuity across channels within and across channel families. The cystine bridge connectivity of ProTx-II is very similar to that of other members of this family, i.e., C2 to C16, C9 to C21, and C15 to C25. These peptides are the first high-affinity ligands for tetrodotoxin-resistant peripheral nerve NaV channels, but also inhibit other NaV channels (IC50's < 100 nM). ProTx-I and ProTx-II shift the voltage dependence of activation of NaV 1.5 to more positive voltages, similar to other gating-modifier ICK family members. ProTx-I also shifts the voltage dependence of activation of CaV 3.1 (α1G, T-type, IC50 = 50 nM) without affecting the voltage dependence of inactivation. To enable further structural and functional studies, synthetic ProTx-II was made; it adopts the same structure and has the same functional properties as the native peptide. Synthetic ProTx-I was also made and exhibits the same potency as the native peptide. Synthetic ProTx-I, but not ProTx-II, also inhibits KV 2.1 channels with 10-fold less potency than its potency on NaV channels. These peptides represent novel tools for exploring the gating mechanisms of several NaV and CaV channels. |
doi_str_mv | 10.1021/bi026546a |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72753569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72753569</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-a9e116d36a8cc1c77a251b710ce56d10e7bc05717b371e3d927322f46f2193683</originalsourceid><addsrcrecordid>eNqF0MtKw0AUBuBBFFurC19AslFwEZ37NMsSqxYrFhvB3TCZTOjUXGpm4uXtjaToRnB1OJyP_8APwDGCFwhidJlaiDmjXO2AIWIYhjSK2C4YQgh5iCMOB-DAuXW3UijoPhggTAXDGA_BNHmvg0Q1qvJtoYKF2XibGRfMqpVNrQ8m2ts35W1dBXUe3LeFt5vCBMs6s20ZxCtVVaZwh2AvV4UzR9s5Ak_X0yS-DecPN7N4Mg8VpdyHKjII8YxwNdYaaSEUZigVCGrDeIagEamGTCCREoEMySIsCMY55TlGEeFjMgJnfe6mqV9b47wsrdOmKFRl6tZJgQUjjEf_QjQWsPsBO3jeQ93UzjUml5vGlqr5lAjK73LlT7mdPdmGtmlpsl-5bbMDYQ-s8-bj566aF8kFEUwmi6V8pIsYX90R-dz5094r7eS6bpuqK--Px18XsI2P</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18703710</pqid></control><display><type>article</type><title>Two Tarantula Peptides Inhibit Activation of Multiple Sodium Channels</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Middleton, Richard E ; Warren, Vivien A ; Kraus, Richard L ; Hwang, Jeremy C ; Liu, Chou J ; Dai, Ge ; Brochu, Richard M ; Kohler, Martin G ; Gao, Ying-Duo ; Garsky, Victor M ; Bogusky, Michael J ; Mehl, John T ; Cohen, Charles J ; Smith, McHardy M</creator><creatorcontrib>Middleton, Richard E ; Warren, Vivien A ; Kraus, Richard L ; Hwang, Jeremy C ; Liu, Chou J ; Dai, Ge ; Brochu, Richard M ; Kohler, Martin G ; Gao, Ying-Duo ; Garsky, Victor M ; Bogusky, Michael J ; Mehl, John T ; Cohen, Charles J ; Smith, McHardy M</creatorcontrib><description>Two peptides, ProTx-I and ProTx-II, from the venom of the tarantula Thrixopelma pruriens, have been isolated and characterized. These peptides were purified on the basis of their ability to reversibly inhibit the tetrodotoxin-resistant Na channel, NaV 1.8, and are shown to belong to the inhibitory cystine knot (ICK) family of peptide toxins interacting with voltage-gated ion channels. The family has several hallmarks: cystine bridge connectivity, mechanism of channel inhibition, and promiscuity across channels within and across channel families. The cystine bridge connectivity of ProTx-II is very similar to that of other members of this family, i.e., C2 to C16, C9 to C21, and C15 to C25. These peptides are the first high-affinity ligands for tetrodotoxin-resistant peripheral nerve NaV channels, but also inhibit other NaV channels (IC50's < 100 nM). ProTx-I and ProTx-II shift the voltage dependence of activation of NaV 1.5 to more positive voltages, similar to other gating-modifier ICK family members. ProTx-I also shifts the voltage dependence of activation of CaV 3.1 (α1G, T-type, IC50 = 50 nM) without affecting the voltage dependence of inactivation. To enable further structural and functional studies, synthetic ProTx-II was made; it adopts the same structure and has the same functional properties as the native peptide. Synthetic ProTx-I was also made and exhibits the same potency as the native peptide. Synthetic ProTx-I, but not ProTx-II, also inhibits KV 2.1 channels with 10-fold less potency than its potency on NaV channels. These peptides represent novel tools for exploring the gating mechanisms of several NaV and CaV channels.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi026546a</identifier><identifier>PMID: 12475222</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Animals ; Calcium Channel Blockers - chemistry ; Calcium Channel Blockers - isolation & purification ; Calcium Channel Blockers - pharmacology ; Cell Line ; Disulfides - chemistry ; Electrophysiology ; Humans ; Ion Channel Gating - drug effects ; Molecular Sequence Data ; Peptides - chemistry ; Peptides - isolation & purification ; Peptides - pharmacology ; Potassium Channel Blockers - chemistry ; Potassium Channel Blockers - isolation & purification ; Potassium Channel Blockers - pharmacology ; Rats ; Rats, Wistar ; Sodium Channel Blockers - chemistry ; Sodium Channel Blockers - isolation & purification ; Sodium Channel Blockers - pharmacology ; Sodium Channels - metabolism ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Spider Venoms - chemistry ; Spider Venoms - isolation & purification ; Spider Venoms - pharmacology</subject><ispartof>Biochemistry (Easton), 2002-12, Vol.41 (50), p.14734-14747</ispartof><rights>Copyright © 2002 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-a9e116d36a8cc1c77a251b710ce56d10e7bc05717b371e3d927322f46f2193683</citedby><cites>FETCH-LOGICAL-a446t-a9e116d36a8cc1c77a251b710ce56d10e7bc05717b371e3d927322f46f2193683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi026546a$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi026546a$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12475222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Middleton, Richard E</creatorcontrib><creatorcontrib>Warren, Vivien A</creatorcontrib><creatorcontrib>Kraus, Richard L</creatorcontrib><creatorcontrib>Hwang, Jeremy C</creatorcontrib><creatorcontrib>Liu, Chou J</creatorcontrib><creatorcontrib>Dai, Ge</creatorcontrib><creatorcontrib>Brochu, Richard M</creatorcontrib><creatorcontrib>Kohler, Martin G</creatorcontrib><creatorcontrib>Gao, Ying-Duo</creatorcontrib><creatorcontrib>Garsky, Victor M</creatorcontrib><creatorcontrib>Bogusky, Michael J</creatorcontrib><creatorcontrib>Mehl, John T</creatorcontrib><creatorcontrib>Cohen, Charles J</creatorcontrib><creatorcontrib>Smith, McHardy M</creatorcontrib><title>Two Tarantula Peptides Inhibit Activation of Multiple Sodium Channels</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Two peptides, ProTx-I and ProTx-II, from the venom of the tarantula Thrixopelma pruriens, have been isolated and characterized. These peptides were purified on the basis of their ability to reversibly inhibit the tetrodotoxin-resistant Na channel, NaV 1.8, and are shown to belong to the inhibitory cystine knot (ICK) family of peptide toxins interacting with voltage-gated ion channels. The family has several hallmarks: cystine bridge connectivity, mechanism of channel inhibition, and promiscuity across channels within and across channel families. The cystine bridge connectivity of ProTx-II is very similar to that of other members of this family, i.e., C2 to C16, C9 to C21, and C15 to C25. These peptides are the first high-affinity ligands for tetrodotoxin-resistant peripheral nerve NaV channels, but also inhibit other NaV channels (IC50's < 100 nM). ProTx-I and ProTx-II shift the voltage dependence of activation of NaV 1.5 to more positive voltages, similar to other gating-modifier ICK family members. ProTx-I also shifts the voltage dependence of activation of CaV 3.1 (α1G, T-type, IC50 = 50 nM) without affecting the voltage dependence of inactivation. To enable further structural and functional studies, synthetic ProTx-II was made; it adopts the same structure and has the same functional properties as the native peptide. Synthetic ProTx-I was also made and exhibits the same potency as the native peptide. Synthetic ProTx-I, but not ProTx-II, also inhibits KV 2.1 channels with 10-fold less potency than its potency on NaV channels. These peptides represent novel tools for exploring the gating mechanisms of several NaV and CaV channels.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Calcium Channel Blockers - chemistry</subject><subject>Calcium Channel Blockers - isolation & purification</subject><subject>Calcium Channel Blockers - pharmacology</subject><subject>Cell Line</subject><subject>Disulfides - chemistry</subject><subject>Electrophysiology</subject><subject>Humans</subject><subject>Ion Channel Gating - drug effects</subject><subject>Molecular Sequence Data</subject><subject>Peptides - chemistry</subject><subject>Peptides - isolation & purification</subject><subject>Peptides - pharmacology</subject><subject>Potassium Channel Blockers - chemistry</subject><subject>Potassium Channel Blockers - isolation & purification</subject><subject>Potassium Channel Blockers - pharmacology</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>Sodium Channel Blockers - chemistry</subject><subject>Sodium Channel Blockers - isolation & purification</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Sodium Channels - metabolism</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Spider Venoms - chemistry</subject><subject>Spider Venoms - isolation & purification</subject><subject>Spider Venoms - pharmacology</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0MtKw0AUBuBBFFurC19AslFwEZ37NMsSqxYrFhvB3TCZTOjUXGpm4uXtjaToRnB1OJyP_8APwDGCFwhidJlaiDmjXO2AIWIYhjSK2C4YQgh5iCMOB-DAuXW3UijoPhggTAXDGA_BNHmvg0Q1qvJtoYKF2XibGRfMqpVNrQ8m2ts35W1dBXUe3LeFt5vCBMs6s20ZxCtVVaZwh2AvV4UzR9s5Ak_X0yS-DecPN7N4Mg8VpdyHKjII8YxwNdYaaSEUZigVCGrDeIagEamGTCCREoEMySIsCMY55TlGEeFjMgJnfe6mqV9b47wsrdOmKFRl6tZJgQUjjEf_QjQWsPsBO3jeQ93UzjUml5vGlqr5lAjK73LlT7mdPdmGtmlpsl-5bbMDYQ-s8-bj566aF8kFEUwmi6V8pIsYX90R-dz5094r7eS6bpuqK--Px18XsI2P</recordid><startdate>20021217</startdate><enddate>20021217</enddate><creator>Middleton, Richard E</creator><creator>Warren, Vivien A</creator><creator>Kraus, Richard L</creator><creator>Hwang, Jeremy C</creator><creator>Liu, Chou J</creator><creator>Dai, Ge</creator><creator>Brochu, Richard M</creator><creator>Kohler, Martin G</creator><creator>Gao, Ying-Duo</creator><creator>Garsky, Victor M</creator><creator>Bogusky, Michael J</creator><creator>Mehl, John T</creator><creator>Cohen, Charles J</creator><creator>Smith, McHardy M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>7X8</scope></search><sort><creationdate>20021217</creationdate><title>Two Tarantula Peptides Inhibit Activation of Multiple Sodium Channels</title><author>Middleton, Richard E ; Warren, Vivien A ; Kraus, Richard L ; Hwang, Jeremy C ; Liu, Chou J ; Dai, Ge ; Brochu, Richard M ; Kohler, Martin G ; Gao, Ying-Duo ; Garsky, Victor M ; Bogusky, Michael J ; Mehl, John T ; Cohen, Charles J ; Smith, McHardy M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-a9e116d36a8cc1c77a251b710ce56d10e7bc05717b371e3d927322f46f2193683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Calcium Channel Blockers - chemistry</topic><topic>Calcium Channel Blockers - isolation & purification</topic><topic>Calcium Channel Blockers - pharmacology</topic><topic>Cell Line</topic><topic>Disulfides - chemistry</topic><topic>Electrophysiology</topic><topic>Humans</topic><topic>Ion Channel Gating - drug effects</topic><topic>Molecular Sequence Data</topic><topic>Peptides - chemistry</topic><topic>Peptides - isolation & purification</topic><topic>Peptides - pharmacology</topic><topic>Potassium Channel Blockers - chemistry</topic><topic>Potassium Channel Blockers - isolation & purification</topic><topic>Potassium Channel Blockers - pharmacology</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>Sodium Channel Blockers - chemistry</topic><topic>Sodium Channel Blockers - isolation & purification</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Sodium Channels - metabolism</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Spider Venoms - chemistry</topic><topic>Spider Venoms - isolation & purification</topic><topic>Spider Venoms - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Middleton, Richard E</creatorcontrib><creatorcontrib>Warren, Vivien A</creatorcontrib><creatorcontrib>Kraus, Richard L</creatorcontrib><creatorcontrib>Hwang, Jeremy C</creatorcontrib><creatorcontrib>Liu, Chou J</creatorcontrib><creatorcontrib>Dai, Ge</creatorcontrib><creatorcontrib>Brochu, Richard M</creatorcontrib><creatorcontrib>Kohler, Martin G</creatorcontrib><creatorcontrib>Gao, Ying-Duo</creatorcontrib><creatorcontrib>Garsky, Victor M</creatorcontrib><creatorcontrib>Bogusky, Michael J</creatorcontrib><creatorcontrib>Mehl, John T</creatorcontrib><creatorcontrib>Cohen, Charles J</creatorcontrib><creatorcontrib>Smith, McHardy M</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Middleton, Richard E</au><au>Warren, Vivien A</au><au>Kraus, Richard L</au><au>Hwang, Jeremy C</au><au>Liu, Chou J</au><au>Dai, Ge</au><au>Brochu, Richard M</au><au>Kohler, Martin G</au><au>Gao, Ying-Duo</au><au>Garsky, Victor M</au><au>Bogusky, Michael J</au><au>Mehl, John T</au><au>Cohen, Charles J</au><au>Smith, McHardy M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two Tarantula Peptides Inhibit Activation of Multiple Sodium Channels</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2002-12-17</date><risdate>2002</risdate><volume>41</volume><issue>50</issue><spage>14734</spage><epage>14747</epage><pages>14734-14747</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Two peptides, ProTx-I and ProTx-II, from the venom of the tarantula Thrixopelma pruriens, have been isolated and characterized. These peptides were purified on the basis of their ability to reversibly inhibit the tetrodotoxin-resistant Na channel, NaV 1.8, and are shown to belong to the inhibitory cystine knot (ICK) family of peptide toxins interacting with voltage-gated ion channels. The family has several hallmarks: cystine bridge connectivity, mechanism of channel inhibition, and promiscuity across channels within and across channel families. The cystine bridge connectivity of ProTx-II is very similar to that of other members of this family, i.e., C2 to C16, C9 to C21, and C15 to C25. These peptides are the first high-affinity ligands for tetrodotoxin-resistant peripheral nerve NaV channels, but also inhibit other NaV channels (IC50's < 100 nM). ProTx-I and ProTx-II shift the voltage dependence of activation of NaV 1.5 to more positive voltages, similar to other gating-modifier ICK family members. ProTx-I also shifts the voltage dependence of activation of CaV 3.1 (α1G, T-type, IC50 = 50 nM) without affecting the voltage dependence of inactivation. To enable further structural and functional studies, synthetic ProTx-II was made; it adopts the same structure and has the same functional properties as the native peptide. Synthetic ProTx-I was also made and exhibits the same potency as the native peptide. Synthetic ProTx-I, but not ProTx-II, also inhibits KV 2.1 channels with 10-fold less potency than its potency on NaV channels. These peptides represent novel tools for exploring the gating mechanisms of several NaV and CaV channels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>12475222</pmid><doi>10.1021/bi026546a</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2002-12, Vol.41 (50), p.14734-14747 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_72753569 |
source | MEDLINE; American Chemical Society Journals |
subjects | Amino Acid Sequence Animals Calcium Channel Blockers - chemistry Calcium Channel Blockers - isolation & purification Calcium Channel Blockers - pharmacology Cell Line Disulfides - chemistry Electrophysiology Humans Ion Channel Gating - drug effects Molecular Sequence Data Peptides - chemistry Peptides - isolation & purification Peptides - pharmacology Potassium Channel Blockers - chemistry Potassium Channel Blockers - isolation & purification Potassium Channel Blockers - pharmacology Rats Rats, Wistar Sodium Channel Blockers - chemistry Sodium Channel Blockers - isolation & purification Sodium Channel Blockers - pharmacology Sodium Channels - metabolism Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Spider Venoms - chemistry Spider Venoms - isolation & purification Spider Venoms - pharmacology |
title | Two Tarantula Peptides Inhibit Activation of Multiple Sodium Channels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T01%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20Tarantula%20Peptides%20Inhibit%20Activation%20of%20Multiple%20Sodium%20Channels&rft.jtitle=Biochemistry%20(Easton)&rft.au=Middleton,%20Richard%20E&rft.date=2002-12-17&rft.volume=41&rft.issue=50&rft.spage=14734&rft.epage=14747&rft.pages=14734-14747&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi026546a&rft_dat=%3Cproquest_cross%3E72753569%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18703710&rft_id=info:pmid/12475222&rfr_iscdi=true |