Short Chain Fatty Acids and Colon Cancer
The development of intestinal cancer involves complex genetic and epigenetic alterations in the intestinal mucosa. The principal signaling pathway responsible for the initiation of tumor formation, the APC-β-catenin-TCF4 pathway, regulates both cell proliferation and colonic cell differentiation, bu...
Gespeichert in:
Veröffentlicht in: | The Journal of nutrition 2002-12, Vol.132 (12), p.3804S-3808S |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3808S |
---|---|
container_issue | 12 |
container_start_page | 3804S |
container_title | The Journal of nutrition |
container_volume | 132 |
creator | Augenlicht, Leonard H. Mariadason, John M. Wilson, Andrew Arango, Diego Yang, WanCai Heerdt, Barbara G. Velcich, Anna |
description | The development of intestinal cancer involves complex genetic and epigenetic alterations in the intestinal mucosa. The principal signaling pathway responsible for the initiation of tumor formation, the APC-β-catenin-TCF4 pathway, regulates both cell proliferation and colonic cell differentiation, but many other intrinsic and extrinsic signals also modulate these cell maturation pathways. The challenge is to understand how signaling and cell maturation are also modulated by nutritional agents. Through gene expression profiling, we have gained insight into the mechanisms by which short chain fatty acids regulate these pathways and the differences in response of gene programs, and of the specific regulation of the c-myc gene, to physiological regulators of intestinal cell maturation, such as butyrate, compared with pharmacological regulators such as the nonsteroidal antiinflammatory drug sulindac. Moreover, we used a combination of gene expression profiling of the response of cells in culture to sulindac and the response of the human mucosa in subjects treated with sulindac for 1 month, coupled with a mouse genetic model approach, to identify the cyclin dependent kinase inhibitor p21WAF1/Cip1 as an important suppressor of Apc-initiated intestinal tumor formation and a necessary component for tumor inhibition by sulindac. Finally, the mucous barrier, secreted by intestinal goblet cells, is the interface between the luminal contents and the intestinal mucosa. We generated a mouse genetic model with a targeted inactivation of the Muc2 gene that encodes the major intestinal mucin. These mice have no recognizable goblet cells due to the failure of cells to synthesize and store mucin. This leads to perturbations in intestinal crypt architecture, increased cellular proliferation and rates of cell migration, decreased apoptosis and development of adenomas and adenocarcinomas in the small and large intestine and the rectum. |
doi_str_mv | 10.1093/jn/132.12.3804S |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72749402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022316622150157</els_id><sourcerecordid>72749402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-90d2060119dcc4fdde4ce3ecb7c9c32f6bb5dc209aa63672fdac7ba92a84d0433</originalsourceid><addsrcrecordid>eNp10E1LAzEQgOEgitaPszddPIiXbSeTNLs5yuIXCB6q55BNsprSbjTZCv57U1sQBE-5vJkZHkJOKYwpSDaZ9xPKcExxzGrgsx0yolNOS0EBdskIALFkVIgDcpjSHAAol_U-OaDIRS2wHpGr2VuIQ9G8ad8Xt3oYvopr420qdG-LJixCXzS6Ny4ek71OL5I72b5H5OX25rm5Lx-f7h6a68fScDYdSgkWQQCl0hrDO2sdN44501ZGGoadaNupNQhSa8FEhZ3Vpmq1RF1zC5yxI3K5mfsew8fKpUEtfTJusdC9C6ukKqy45IA5vPgTzsMq9vk2RWXFEdl0HU02kYkhpeg69R79UscvRUGtBdW8V1lQUVQ_gvnH2Xbsql06-9tvyXJwvgk6HZR-jT6plxlm2cwrOFTrpXJTuOz06V1UyXiXEa2PzgzKBv_v-m-lz4Ye</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197422352</pqid></control><display><type>article</type><title>Short Chain Fatty Acids and Colon Cancer</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Augenlicht, Leonard H. ; Mariadason, John M. ; Wilson, Andrew ; Arango, Diego ; Yang, WanCai ; Heerdt, Barbara G. ; Velcich, Anna</creator><creatorcontrib>Augenlicht, Leonard H. ; Mariadason, John M. ; Wilson, Andrew ; Arango, Diego ; Yang, WanCai ; Heerdt, Barbara G. ; Velcich, Anna</creatorcontrib><description>The development of intestinal cancer involves complex genetic and epigenetic alterations in the intestinal mucosa. The principal signaling pathway responsible for the initiation of tumor formation, the APC-β-catenin-TCF4 pathway, regulates both cell proliferation and colonic cell differentiation, but many other intrinsic and extrinsic signals also modulate these cell maturation pathways. The challenge is to understand how signaling and cell maturation are also modulated by nutritional agents. Through gene expression profiling, we have gained insight into the mechanisms by which short chain fatty acids regulate these pathways and the differences in response of gene programs, and of the specific regulation of the c-myc gene, to physiological regulators of intestinal cell maturation, such as butyrate, compared with pharmacological regulators such as the nonsteroidal antiinflammatory drug sulindac. Moreover, we used a combination of gene expression profiling of the response of cells in culture to sulindac and the response of the human mucosa in subjects treated with sulindac for 1 month, coupled with a mouse genetic model approach, to identify the cyclin dependent kinase inhibitor p21WAF1/Cip1 as an important suppressor of Apc-initiated intestinal tumor formation and a necessary component for tumor inhibition by sulindac. Finally, the mucous barrier, secreted by intestinal goblet cells, is the interface between the luminal contents and the intestinal mucosa. We generated a mouse genetic model with a targeted inactivation of the Muc2 gene that encodes the major intestinal mucin. These mice have no recognizable goblet cells due to the failure of cells to synthesize and store mucin. This leads to perturbations in intestinal crypt architecture, increased cellular proliferation and rates of cell migration, decreased apoptosis and development of adenomas and adenocarcinomas in the small and large intestine and the rectum.</description><identifier>ISSN: 0022-3166</identifier><identifier>EISSN: 1541-6100</identifier><identifier>DOI: 10.1093/jn/132.12.3804S</identifier><identifier>PMID: 12468628</identifier><identifier>CODEN: JONUAI</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adenocarcinoma ; Animals ; apoptosis ; beta Catenin ; Cancer ; Cell Differentiation ; cell maturation ; cell movement ; cell proliferation ; Cells ; Colonic Neoplasms - genetics ; Colonic Neoplasms - metabolism ; colorectal neoplasms ; Cytoskeletal Proteins - metabolism ; Disease Models, Animal ; drugs ; epigenetics ; Fatty Acids - metabolism ; gene expression ; Gene Expression Profiling ; genes ; Genetics ; goblet cells ; Humans ; intestinal cancer ; intestinal mucosa ; Mice ; mouse genetic models ; mucin ; mucins ; Mucins - metabolism ; Nutrition ; Oligonucleotide Array Sequence Analysis ; rectum ; Rodents ; short chain fatty acids ; Trans-Activators - metabolism ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>The Journal of nutrition, 2002-12, Vol.132 (12), p.3804S-3808S</ispartof><rights>2002 American Society for Nutrition.</rights><rights>Copyright American Institute of Nutrition Dec 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-90d2060119dcc4fdde4ce3ecb7c9c32f6bb5dc209aa63672fdac7ba92a84d0433</citedby><cites>FETCH-LOGICAL-c435t-90d2060119dcc4fdde4ce3ecb7c9c32f6bb5dc209aa63672fdac7ba92a84d0433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12468628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Augenlicht, Leonard H.</creatorcontrib><creatorcontrib>Mariadason, John M.</creatorcontrib><creatorcontrib>Wilson, Andrew</creatorcontrib><creatorcontrib>Arango, Diego</creatorcontrib><creatorcontrib>Yang, WanCai</creatorcontrib><creatorcontrib>Heerdt, Barbara G.</creatorcontrib><creatorcontrib>Velcich, Anna</creatorcontrib><title>Short Chain Fatty Acids and Colon Cancer</title><title>The Journal of nutrition</title><addtitle>J Nutr</addtitle><description>The development of intestinal cancer involves complex genetic and epigenetic alterations in the intestinal mucosa. The principal signaling pathway responsible for the initiation of tumor formation, the APC-β-catenin-TCF4 pathway, regulates both cell proliferation and colonic cell differentiation, but many other intrinsic and extrinsic signals also modulate these cell maturation pathways. The challenge is to understand how signaling and cell maturation are also modulated by nutritional agents. Through gene expression profiling, we have gained insight into the mechanisms by which short chain fatty acids regulate these pathways and the differences in response of gene programs, and of the specific regulation of the c-myc gene, to physiological regulators of intestinal cell maturation, such as butyrate, compared with pharmacological regulators such as the nonsteroidal antiinflammatory drug sulindac. Moreover, we used a combination of gene expression profiling of the response of cells in culture to sulindac and the response of the human mucosa in subjects treated with sulindac for 1 month, coupled with a mouse genetic model approach, to identify the cyclin dependent kinase inhibitor p21WAF1/Cip1 as an important suppressor of Apc-initiated intestinal tumor formation and a necessary component for tumor inhibition by sulindac. Finally, the mucous barrier, secreted by intestinal goblet cells, is the interface between the luminal contents and the intestinal mucosa. We generated a mouse genetic model with a targeted inactivation of the Muc2 gene that encodes the major intestinal mucin. These mice have no recognizable goblet cells due to the failure of cells to synthesize and store mucin. This leads to perturbations in intestinal crypt architecture, increased cellular proliferation and rates of cell migration, decreased apoptosis and development of adenomas and adenocarcinomas in the small and large intestine and the rectum.</description><subject>adenocarcinoma</subject><subject>Animals</subject><subject>apoptosis</subject><subject>beta Catenin</subject><subject>Cancer</subject><subject>Cell Differentiation</subject><subject>cell maturation</subject><subject>cell movement</subject><subject>cell proliferation</subject><subject>Cells</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colonic Neoplasms - metabolism</subject><subject>colorectal neoplasms</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Disease Models, Animal</subject><subject>drugs</subject><subject>epigenetics</subject><subject>Fatty Acids - metabolism</subject><subject>gene expression</subject><subject>Gene Expression Profiling</subject><subject>genes</subject><subject>Genetics</subject><subject>goblet cells</subject><subject>Humans</subject><subject>intestinal cancer</subject><subject>intestinal mucosa</subject><subject>Mice</subject><subject>mouse genetic models</subject><subject>mucin</subject><subject>mucins</subject><subject>Mucins - metabolism</subject><subject>Nutrition</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>rectum</subject><subject>Rodents</subject><subject>short chain fatty acids</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>0022-3166</issn><issn>1541-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LAzEQgOEgitaPszddPIiXbSeTNLs5yuIXCB6q55BNsprSbjTZCv57U1sQBE-5vJkZHkJOKYwpSDaZ9xPKcExxzGrgsx0yolNOS0EBdskIALFkVIgDcpjSHAAol_U-OaDIRS2wHpGr2VuIQ9G8ad8Xt3oYvopr420qdG-LJixCXzS6Ny4ek71OL5I72b5H5OX25rm5Lx-f7h6a68fScDYdSgkWQQCl0hrDO2sdN44501ZGGoadaNupNQhSa8FEhZ3Vpmq1RF1zC5yxI3K5mfsew8fKpUEtfTJusdC9C6ukKqy45IA5vPgTzsMq9vk2RWXFEdl0HU02kYkhpeg69R79UscvRUGtBdW8V1lQUVQ_gvnH2Xbsql06-9tvyXJwvgk6HZR-jT6plxlm2cwrOFTrpXJTuOz06V1UyXiXEa2PzgzKBv_v-m-lz4Ye</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Augenlicht, Leonard H.</creator><creator>Mariadason, John M.</creator><creator>Wilson, Andrew</creator><creator>Arango, Diego</creator><creator>Yang, WanCai</creator><creator>Heerdt, Barbara G.</creator><creator>Velcich, Anna</creator><general>Elsevier Inc</general><general>American Institute of Nutrition</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20021201</creationdate><title>Short Chain Fatty Acids and Colon Cancer</title><author>Augenlicht, Leonard H. ; Mariadason, John M. ; Wilson, Andrew ; Arango, Diego ; Yang, WanCai ; Heerdt, Barbara G. ; Velcich, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-90d2060119dcc4fdde4ce3ecb7c9c32f6bb5dc209aa63672fdac7ba92a84d0433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>adenocarcinoma</topic><topic>Animals</topic><topic>apoptosis</topic><topic>beta Catenin</topic><topic>Cancer</topic><topic>Cell Differentiation</topic><topic>cell maturation</topic><topic>cell movement</topic><topic>cell proliferation</topic><topic>Cells</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colonic Neoplasms - metabolism</topic><topic>colorectal neoplasms</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Disease Models, Animal</topic><topic>drugs</topic><topic>epigenetics</topic><topic>Fatty Acids - metabolism</topic><topic>gene expression</topic><topic>Gene Expression Profiling</topic><topic>genes</topic><topic>Genetics</topic><topic>goblet cells</topic><topic>Humans</topic><topic>intestinal cancer</topic><topic>intestinal mucosa</topic><topic>Mice</topic><topic>mouse genetic models</topic><topic>mucin</topic><topic>mucins</topic><topic>Mucins - metabolism</topic><topic>Nutrition</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>rectum</topic><topic>Rodents</topic><topic>short chain fatty acids</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Augenlicht, Leonard H.</creatorcontrib><creatorcontrib>Mariadason, John M.</creatorcontrib><creatorcontrib>Wilson, Andrew</creatorcontrib><creatorcontrib>Arango, Diego</creatorcontrib><creatorcontrib>Yang, WanCai</creatorcontrib><creatorcontrib>Heerdt, Barbara G.</creatorcontrib><creatorcontrib>Velcich, Anna</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Augenlicht, Leonard H.</au><au>Mariadason, John M.</au><au>Wilson, Andrew</au><au>Arango, Diego</au><au>Yang, WanCai</au><au>Heerdt, Barbara G.</au><au>Velcich, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short Chain Fatty Acids and Colon Cancer</atitle><jtitle>The Journal of nutrition</jtitle><addtitle>J Nutr</addtitle><date>2002-12-01</date><risdate>2002</risdate><volume>132</volume><issue>12</issue><spage>3804S</spage><epage>3808S</epage><pages>3804S-3808S</pages><issn>0022-3166</issn><eissn>1541-6100</eissn><coden>JONUAI</coden><abstract>The development of intestinal cancer involves complex genetic and epigenetic alterations in the intestinal mucosa. The principal signaling pathway responsible for the initiation of tumor formation, the APC-β-catenin-TCF4 pathway, regulates both cell proliferation and colonic cell differentiation, but many other intrinsic and extrinsic signals also modulate these cell maturation pathways. The challenge is to understand how signaling and cell maturation are also modulated by nutritional agents. Through gene expression profiling, we have gained insight into the mechanisms by which short chain fatty acids regulate these pathways and the differences in response of gene programs, and of the specific regulation of the c-myc gene, to physiological regulators of intestinal cell maturation, such as butyrate, compared with pharmacological regulators such as the nonsteroidal antiinflammatory drug sulindac. Moreover, we used a combination of gene expression profiling of the response of cells in culture to sulindac and the response of the human mucosa in subjects treated with sulindac for 1 month, coupled with a mouse genetic model approach, to identify the cyclin dependent kinase inhibitor p21WAF1/Cip1 as an important suppressor of Apc-initiated intestinal tumor formation and a necessary component for tumor inhibition by sulindac. Finally, the mucous barrier, secreted by intestinal goblet cells, is the interface between the luminal contents and the intestinal mucosa. We generated a mouse genetic model with a targeted inactivation of the Muc2 gene that encodes the major intestinal mucin. These mice have no recognizable goblet cells due to the failure of cells to synthesize and store mucin. This leads to perturbations in intestinal crypt architecture, increased cellular proliferation and rates of cell migration, decreased apoptosis and development of adenomas and adenocarcinomas in the small and large intestine and the rectum.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12468628</pmid><doi>10.1093/jn/132.12.3804S</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3166 |
ispartof | The Journal of nutrition, 2002-12, Vol.132 (12), p.3804S-3808S |
issn | 0022-3166 1541-6100 |
language | eng |
recordid | cdi_proquest_miscellaneous_72749402 |
source | MEDLINE; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection |
subjects | adenocarcinoma Animals apoptosis beta Catenin Cancer Cell Differentiation cell maturation cell movement cell proliferation Cells Colonic Neoplasms - genetics Colonic Neoplasms - metabolism colorectal neoplasms Cytoskeletal Proteins - metabolism Disease Models, Animal drugs epigenetics Fatty Acids - metabolism gene expression Gene Expression Profiling genes Genetics goblet cells Humans intestinal cancer intestinal mucosa Mice mouse genetic models mucin mucins Mucins - metabolism Nutrition Oligonucleotide Array Sequence Analysis rectum Rodents short chain fatty acids Trans-Activators - metabolism Transcription Factors - metabolism Transcription, Genetic |
title | Short Chain Fatty Acids and Colon Cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20Chain%20Fatty%20Acids%20and%20Colon%20Cancer&rft.jtitle=The%20Journal%20of%20nutrition&rft.au=Augenlicht,%20Leonard%20H.&rft.date=2002-12-01&rft.volume=132&rft.issue=12&rft.spage=3804S&rft.epage=3808S&rft.pages=3804S-3808S&rft.issn=0022-3166&rft.eissn=1541-6100&rft.coden=JONUAI&rft_id=info:doi/10.1093/jn/132.12.3804S&rft_dat=%3Cproquest_cross%3E72749402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197422352&rft_id=info:pmid/12468628&rft_els_id=S0022316622150157&rfr_iscdi=true |