Short Chain Fatty Acids and Colon Cancer

The development of intestinal cancer involves complex genetic and epigenetic alterations in the intestinal mucosa. The principal signaling pathway responsible for the initiation of tumor formation, the APC-β-catenin-TCF4 pathway, regulates both cell proliferation and colonic cell differentiation, bu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of nutrition 2002-12, Vol.132 (12), p.3804S-3808S
Hauptverfasser: Augenlicht, Leonard H., Mariadason, John M., Wilson, Andrew, Arango, Diego, Yang, WanCai, Heerdt, Barbara G., Velcich, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3808S
container_issue 12
container_start_page 3804S
container_title The Journal of nutrition
container_volume 132
creator Augenlicht, Leonard H.
Mariadason, John M.
Wilson, Andrew
Arango, Diego
Yang, WanCai
Heerdt, Barbara G.
Velcich, Anna
description The development of intestinal cancer involves complex genetic and epigenetic alterations in the intestinal mucosa. The principal signaling pathway responsible for the initiation of tumor formation, the APC-β-catenin-TCF4 pathway, regulates both cell proliferation and colonic cell differentiation, but many other intrinsic and extrinsic signals also modulate these cell maturation pathways. The challenge is to understand how signaling and cell maturation are also modulated by nutritional agents. Through gene expression profiling, we have gained insight into the mechanisms by which short chain fatty acids regulate these pathways and the differences in response of gene programs, and of the specific regulation of the c-myc gene, to physiological regulators of intestinal cell maturation, such as butyrate, compared with pharmacological regulators such as the nonsteroidal antiinflammatory drug sulindac. Moreover, we used a combination of gene expression profiling of the response of cells in culture to sulindac and the response of the human mucosa in subjects treated with sulindac for 1 month, coupled with a mouse genetic model approach, to identify the cyclin dependent kinase inhibitor p21WAF1/Cip1 as an important suppressor of Apc-initiated intestinal tumor formation and a necessary component for tumor inhibition by sulindac. Finally, the mucous barrier, secreted by intestinal goblet cells, is the interface between the luminal contents and the intestinal mucosa. We generated a mouse genetic model with a targeted inactivation of the Muc2 gene that encodes the major intestinal mucin. These mice have no recognizable goblet cells due to the failure of cells to synthesize and store mucin. This leads to perturbations in intestinal crypt architecture, increased cellular proliferation and rates of cell migration, decreased apoptosis and development of adenomas and adenocarcinomas in the small and large intestine and the rectum.
doi_str_mv 10.1093/jn/132.12.3804S
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72749402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022316622150157</els_id><sourcerecordid>72749402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-90d2060119dcc4fdde4ce3ecb7c9c32f6bb5dc209aa63672fdac7ba92a84d0433</originalsourceid><addsrcrecordid>eNp10E1LAzEQgOEgitaPszddPIiXbSeTNLs5yuIXCB6q55BNsprSbjTZCv57U1sQBE-5vJkZHkJOKYwpSDaZ9xPKcExxzGrgsx0yolNOS0EBdskIALFkVIgDcpjSHAAol_U-OaDIRS2wHpGr2VuIQ9G8ad8Xt3oYvopr420qdG-LJixCXzS6Ny4ek71OL5I72b5H5OX25rm5Lx-f7h6a68fScDYdSgkWQQCl0hrDO2sdN44501ZGGoadaNupNQhSa8FEhZ3Vpmq1RF1zC5yxI3K5mfsew8fKpUEtfTJusdC9C6ukKqy45IA5vPgTzsMq9vk2RWXFEdl0HU02kYkhpeg69R79UscvRUGtBdW8V1lQUVQ_gvnH2Xbsql06-9tvyXJwvgk6HZR-jT6plxlm2cwrOFTrpXJTuOz06V1UyXiXEa2PzgzKBv_v-m-lz4Ye</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197422352</pqid></control><display><type>article</type><title>Short Chain Fatty Acids and Colon Cancer</title><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Augenlicht, Leonard H. ; Mariadason, John M. ; Wilson, Andrew ; Arango, Diego ; Yang, WanCai ; Heerdt, Barbara G. ; Velcich, Anna</creator><creatorcontrib>Augenlicht, Leonard H. ; Mariadason, John M. ; Wilson, Andrew ; Arango, Diego ; Yang, WanCai ; Heerdt, Barbara G. ; Velcich, Anna</creatorcontrib><description>The development of intestinal cancer involves complex genetic and epigenetic alterations in the intestinal mucosa. The principal signaling pathway responsible for the initiation of tumor formation, the APC-β-catenin-TCF4 pathway, regulates both cell proliferation and colonic cell differentiation, but many other intrinsic and extrinsic signals also modulate these cell maturation pathways. The challenge is to understand how signaling and cell maturation are also modulated by nutritional agents. Through gene expression profiling, we have gained insight into the mechanisms by which short chain fatty acids regulate these pathways and the differences in response of gene programs, and of the specific regulation of the c-myc gene, to physiological regulators of intestinal cell maturation, such as butyrate, compared with pharmacological regulators such as the nonsteroidal antiinflammatory drug sulindac. Moreover, we used a combination of gene expression profiling of the response of cells in culture to sulindac and the response of the human mucosa in subjects treated with sulindac for 1 month, coupled with a mouse genetic model approach, to identify the cyclin dependent kinase inhibitor p21WAF1/Cip1 as an important suppressor of Apc-initiated intestinal tumor formation and a necessary component for tumor inhibition by sulindac. Finally, the mucous barrier, secreted by intestinal goblet cells, is the interface between the luminal contents and the intestinal mucosa. We generated a mouse genetic model with a targeted inactivation of the Muc2 gene that encodes the major intestinal mucin. These mice have no recognizable goblet cells due to the failure of cells to synthesize and store mucin. This leads to perturbations in intestinal crypt architecture, increased cellular proliferation and rates of cell migration, decreased apoptosis and development of adenomas and adenocarcinomas in the small and large intestine and the rectum.</description><identifier>ISSN: 0022-3166</identifier><identifier>EISSN: 1541-6100</identifier><identifier>DOI: 10.1093/jn/132.12.3804S</identifier><identifier>PMID: 12468628</identifier><identifier>CODEN: JONUAI</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>adenocarcinoma ; Animals ; apoptosis ; beta Catenin ; Cancer ; Cell Differentiation ; cell maturation ; cell movement ; cell proliferation ; Cells ; Colonic Neoplasms - genetics ; Colonic Neoplasms - metabolism ; colorectal neoplasms ; Cytoskeletal Proteins - metabolism ; Disease Models, Animal ; drugs ; epigenetics ; Fatty Acids - metabolism ; gene expression ; Gene Expression Profiling ; genes ; Genetics ; goblet cells ; Humans ; intestinal cancer ; intestinal mucosa ; Mice ; mouse genetic models ; mucin ; mucins ; Mucins - metabolism ; Nutrition ; Oligonucleotide Array Sequence Analysis ; rectum ; Rodents ; short chain fatty acids ; Trans-Activators - metabolism ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>The Journal of nutrition, 2002-12, Vol.132 (12), p.3804S-3808S</ispartof><rights>2002 American Society for Nutrition.</rights><rights>Copyright American Institute of Nutrition Dec 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-90d2060119dcc4fdde4ce3ecb7c9c32f6bb5dc209aa63672fdac7ba92a84d0433</citedby><cites>FETCH-LOGICAL-c435t-90d2060119dcc4fdde4ce3ecb7c9c32f6bb5dc209aa63672fdac7ba92a84d0433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12468628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Augenlicht, Leonard H.</creatorcontrib><creatorcontrib>Mariadason, John M.</creatorcontrib><creatorcontrib>Wilson, Andrew</creatorcontrib><creatorcontrib>Arango, Diego</creatorcontrib><creatorcontrib>Yang, WanCai</creatorcontrib><creatorcontrib>Heerdt, Barbara G.</creatorcontrib><creatorcontrib>Velcich, Anna</creatorcontrib><title>Short Chain Fatty Acids and Colon Cancer</title><title>The Journal of nutrition</title><addtitle>J Nutr</addtitle><description>The development of intestinal cancer involves complex genetic and epigenetic alterations in the intestinal mucosa. The principal signaling pathway responsible for the initiation of tumor formation, the APC-β-catenin-TCF4 pathway, regulates both cell proliferation and colonic cell differentiation, but many other intrinsic and extrinsic signals also modulate these cell maturation pathways. The challenge is to understand how signaling and cell maturation are also modulated by nutritional agents. Through gene expression profiling, we have gained insight into the mechanisms by which short chain fatty acids regulate these pathways and the differences in response of gene programs, and of the specific regulation of the c-myc gene, to physiological regulators of intestinal cell maturation, such as butyrate, compared with pharmacological regulators such as the nonsteroidal antiinflammatory drug sulindac. Moreover, we used a combination of gene expression profiling of the response of cells in culture to sulindac and the response of the human mucosa in subjects treated with sulindac for 1 month, coupled with a mouse genetic model approach, to identify the cyclin dependent kinase inhibitor p21WAF1/Cip1 as an important suppressor of Apc-initiated intestinal tumor formation and a necessary component for tumor inhibition by sulindac. Finally, the mucous barrier, secreted by intestinal goblet cells, is the interface between the luminal contents and the intestinal mucosa. We generated a mouse genetic model with a targeted inactivation of the Muc2 gene that encodes the major intestinal mucin. These mice have no recognizable goblet cells due to the failure of cells to synthesize and store mucin. This leads to perturbations in intestinal crypt architecture, increased cellular proliferation and rates of cell migration, decreased apoptosis and development of adenomas and adenocarcinomas in the small and large intestine and the rectum.</description><subject>adenocarcinoma</subject><subject>Animals</subject><subject>apoptosis</subject><subject>beta Catenin</subject><subject>Cancer</subject><subject>Cell Differentiation</subject><subject>cell maturation</subject><subject>cell movement</subject><subject>cell proliferation</subject><subject>Cells</subject><subject>Colonic Neoplasms - genetics</subject><subject>Colonic Neoplasms - metabolism</subject><subject>colorectal neoplasms</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Disease Models, Animal</subject><subject>drugs</subject><subject>epigenetics</subject><subject>Fatty Acids - metabolism</subject><subject>gene expression</subject><subject>Gene Expression Profiling</subject><subject>genes</subject><subject>Genetics</subject><subject>goblet cells</subject><subject>Humans</subject><subject>intestinal cancer</subject><subject>intestinal mucosa</subject><subject>Mice</subject><subject>mouse genetic models</subject><subject>mucin</subject><subject>mucins</subject><subject>Mucins - metabolism</subject><subject>Nutrition</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>rectum</subject><subject>Rodents</subject><subject>short chain fatty acids</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>0022-3166</issn><issn>1541-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10E1LAzEQgOEgitaPszddPIiXbSeTNLs5yuIXCB6q55BNsprSbjTZCv57U1sQBE-5vJkZHkJOKYwpSDaZ9xPKcExxzGrgsx0yolNOS0EBdskIALFkVIgDcpjSHAAol_U-OaDIRS2wHpGr2VuIQ9G8ad8Xt3oYvopr420qdG-LJixCXzS6Ny4ek71OL5I72b5H5OX25rm5Lx-f7h6a68fScDYdSgkWQQCl0hrDO2sdN44501ZGGoadaNupNQhSa8FEhZ3Vpmq1RF1zC5yxI3K5mfsew8fKpUEtfTJusdC9C6ukKqy45IA5vPgTzsMq9vk2RWXFEdl0HU02kYkhpeg69R79UscvRUGtBdW8V1lQUVQ_gvnH2Xbsql06-9tvyXJwvgk6HZR-jT6plxlm2cwrOFTrpXJTuOz06V1UyXiXEa2PzgzKBv_v-m-lz4Ye</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Augenlicht, Leonard H.</creator><creator>Mariadason, John M.</creator><creator>Wilson, Andrew</creator><creator>Arango, Diego</creator><creator>Yang, WanCai</creator><creator>Heerdt, Barbara G.</creator><creator>Velcich, Anna</creator><general>Elsevier Inc</general><general>American Institute of Nutrition</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>20021201</creationdate><title>Short Chain Fatty Acids and Colon Cancer</title><author>Augenlicht, Leonard H. ; Mariadason, John M. ; Wilson, Andrew ; Arango, Diego ; Yang, WanCai ; Heerdt, Barbara G. ; Velcich, Anna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-90d2060119dcc4fdde4ce3ecb7c9c32f6bb5dc209aa63672fdac7ba92a84d0433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>adenocarcinoma</topic><topic>Animals</topic><topic>apoptosis</topic><topic>beta Catenin</topic><topic>Cancer</topic><topic>Cell Differentiation</topic><topic>cell maturation</topic><topic>cell movement</topic><topic>cell proliferation</topic><topic>Cells</topic><topic>Colonic Neoplasms - genetics</topic><topic>Colonic Neoplasms - metabolism</topic><topic>colorectal neoplasms</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Disease Models, Animal</topic><topic>drugs</topic><topic>epigenetics</topic><topic>Fatty Acids - metabolism</topic><topic>gene expression</topic><topic>Gene Expression Profiling</topic><topic>genes</topic><topic>Genetics</topic><topic>goblet cells</topic><topic>Humans</topic><topic>intestinal cancer</topic><topic>intestinal mucosa</topic><topic>Mice</topic><topic>mouse genetic models</topic><topic>mucin</topic><topic>mucins</topic><topic>Mucins - metabolism</topic><topic>Nutrition</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>rectum</topic><topic>Rodents</topic><topic>short chain fatty acids</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Augenlicht, Leonard H.</creatorcontrib><creatorcontrib>Mariadason, John M.</creatorcontrib><creatorcontrib>Wilson, Andrew</creatorcontrib><creatorcontrib>Arango, Diego</creatorcontrib><creatorcontrib>Yang, WanCai</creatorcontrib><creatorcontrib>Heerdt, Barbara G.</creatorcontrib><creatorcontrib>Velcich, Anna</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Augenlicht, Leonard H.</au><au>Mariadason, John M.</au><au>Wilson, Andrew</au><au>Arango, Diego</au><au>Yang, WanCai</au><au>Heerdt, Barbara G.</au><au>Velcich, Anna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short Chain Fatty Acids and Colon Cancer</atitle><jtitle>The Journal of nutrition</jtitle><addtitle>J Nutr</addtitle><date>2002-12-01</date><risdate>2002</risdate><volume>132</volume><issue>12</issue><spage>3804S</spage><epage>3808S</epage><pages>3804S-3808S</pages><issn>0022-3166</issn><eissn>1541-6100</eissn><coden>JONUAI</coden><abstract>The development of intestinal cancer involves complex genetic and epigenetic alterations in the intestinal mucosa. The principal signaling pathway responsible for the initiation of tumor formation, the APC-β-catenin-TCF4 pathway, regulates both cell proliferation and colonic cell differentiation, but many other intrinsic and extrinsic signals also modulate these cell maturation pathways. The challenge is to understand how signaling and cell maturation are also modulated by nutritional agents. Through gene expression profiling, we have gained insight into the mechanisms by which short chain fatty acids regulate these pathways and the differences in response of gene programs, and of the specific regulation of the c-myc gene, to physiological regulators of intestinal cell maturation, such as butyrate, compared with pharmacological regulators such as the nonsteroidal antiinflammatory drug sulindac. Moreover, we used a combination of gene expression profiling of the response of cells in culture to sulindac and the response of the human mucosa in subjects treated with sulindac for 1 month, coupled with a mouse genetic model approach, to identify the cyclin dependent kinase inhibitor p21WAF1/Cip1 as an important suppressor of Apc-initiated intestinal tumor formation and a necessary component for tumor inhibition by sulindac. Finally, the mucous barrier, secreted by intestinal goblet cells, is the interface between the luminal contents and the intestinal mucosa. We generated a mouse genetic model with a targeted inactivation of the Muc2 gene that encodes the major intestinal mucin. These mice have no recognizable goblet cells due to the failure of cells to synthesize and store mucin. This leads to perturbations in intestinal crypt architecture, increased cellular proliferation and rates of cell migration, decreased apoptosis and development of adenomas and adenocarcinomas in the small and large intestine and the rectum.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12468628</pmid><doi>10.1093/jn/132.12.3804S</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3166
ispartof The Journal of nutrition, 2002-12, Vol.132 (12), p.3804S-3808S
issn 0022-3166
1541-6100
language eng
recordid cdi_proquest_miscellaneous_72749402
source MEDLINE; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection
subjects adenocarcinoma
Animals
apoptosis
beta Catenin
Cancer
Cell Differentiation
cell maturation
cell movement
cell proliferation
Cells
Colonic Neoplasms - genetics
Colonic Neoplasms - metabolism
colorectal neoplasms
Cytoskeletal Proteins - metabolism
Disease Models, Animal
drugs
epigenetics
Fatty Acids - metabolism
gene expression
Gene Expression Profiling
genes
Genetics
goblet cells
Humans
intestinal cancer
intestinal mucosa
Mice
mouse genetic models
mucin
mucins
Mucins - metabolism
Nutrition
Oligonucleotide Array Sequence Analysis
rectum
Rodents
short chain fatty acids
Trans-Activators - metabolism
Transcription Factors - metabolism
Transcription, Genetic
title Short Chain Fatty Acids and Colon Cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T05%3A41%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short%20Chain%20Fatty%20Acids%20and%20Colon%20Cancer&rft.jtitle=The%20Journal%20of%20nutrition&rft.au=Augenlicht,%20Leonard%20H.&rft.date=2002-12-01&rft.volume=132&rft.issue=12&rft.spage=3804S&rft.epage=3808S&rft.pages=3804S-3808S&rft.issn=0022-3166&rft.eissn=1541-6100&rft.coden=JONUAI&rft_id=info:doi/10.1093/jn/132.12.3804S&rft_dat=%3Cproquest_cross%3E72749402%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197422352&rft_id=info:pmid/12468628&rft_els_id=S0022316622150157&rfr_iscdi=true