Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors
The size of the inner water cavity of reversed micelles formed in a triple system ‘water-surfactant-organic solvent’ can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of...
Gespeichert in:
Veröffentlicht in: | Protein engineering 1991-12, Vol.4 (8), p.1009-1017 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1017 |
---|---|
container_issue | 8 |
container_start_page | 1009 |
container_title | Protein engineering |
container_volume | 4 |
creator | Kabanov, Alexander V. Klyachko, Natalya L. Nametkin, Sergei N. Merker, Steffen Zaroza, Anna V. Bunik, Vita I. Ivanov, Mikhail V. Levashov, Andrey V. |
description | The size of the inner water cavity of reversed micelles formed in a triple system ‘water-surfactant-organic solvent’ can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles ‘uncouple’ such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceralde-hyde-3-phosphate dehydrogenase have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed. |
doi_str_mv | 10.1093/protein/4.8.1009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72746290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72746290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c7f768a047a89aaa473b00904edb6bb1c00bcf6c447f5908b37a470519afa7013</originalsourceid><addsrcrecordid>eNpFkM-L1TAQx4so67p69yL0IKKH7iZtmrRHeaw-YcEfKIiXMM2bLNEmeZtp5a3g_27KK89Twnw_M_Odb1E85-ySs7652qc4oQtX4rLLBdY_KM65ErxivBEPT_9aPi6eEP1krJaK87PijKta1oqdF3-vw60LiMmF2zLa0s7BTC4GGEua9wk8mBR9HNHMI6TSRL8f8YC0sOtyKl9j-HPvkd6UMy1zEv7GRLgrvTM4jpkGKj1MyR2WUooJwUwx0dPikYWR8Nn6XhTf3l1_3Wyrm4_vP2ze3lSmkXyqjLJKdsCEgq4HAKGaIR_LBO4GOQzcMDYYK40QyrY964ZGZYa1vAcLKmdxUbw6zs2W72akSXtHizUIGGfSqlZC1j3LIDuC2SRRQqv3yXlI95ozvSSu16O10J1eEs8tL9bZ8-Bx97_hGHHWX646kIHRJgjG0QlrG1GrvstYdcQcTXg4yZB-aaka1ert9x962yrxqf6y0Z-bfzrlnYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72746290</pqid></control><display><type>article</type><title>Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors</title><source>MEDLINE</source><source>Oxford University Press Journals Digital Archive Legacy</source><source>Alma/SFX Local Collection</source><creator>Kabanov, Alexander V. ; Klyachko, Natalya L. ; Nametkin, Sergei N. ; Merker, Steffen ; Zaroza, Anna V. ; Bunik, Vita I. ; Ivanov, Mikhail V. ; Levashov, Andrey V.</creator><creatorcontrib>Kabanov, Alexander V. ; Klyachko, Natalya L. ; Nametkin, Sergei N. ; Merker, Steffen ; Zaroza, Anna V. ; Bunik, Vita I. ; Ivanov, Mikhail V. ; Levashov, Andrey V.</creatorcontrib><description>The size of the inner water cavity of reversed micelles formed in a triple system ‘water-surfactant-organic solvent’ can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles ‘uncouple’ such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceralde-hyde-3-phosphate dehydrogenase have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed.</description><identifier>ISSN: 1741-0126</identifier><identifier>ISSN: 0269-2139</identifier><identifier>EISSN: 1741-0134</identifier><identifier>EISSN: 1460-213X</identifier><identifier>DOI: 10.1093/protein/4.8.1009</identifier><identifier>PMID: 1726270</identifier><identifier>CODEN: PRENE9</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>alkaline phosphatase ; Alkaline Phosphatase - chemistry ; Animals ; Biological and medical sciences ; Biotechnology ; Catalysis ; Centrifugation ; Chymotrypsin - chemistry ; Dioctyl Sulfosuccinic Acid - chemistry ; Enzyme engineering ; Enzymes - chemistry ; Fundamental and applied biological sciences. Psychology ; glyceraldehyde-3-phosphate dehydrogenase ; Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry ; ketoglutarate dehydrogenase ; Ketoglutarate Dehydrogenase Complex - chemistry ; L-Lactate Dehydrogenase - chemistry ; lactic dehydrogenase ; Macromolecular Substances ; Methods. Procedures. Technologies ; Micelles ; Miscellaneous ; Octanes - chemistry ; Protein Conformation ; Protein Engineering ; reversed micelles ; Structure-Activity Relationship</subject><ispartof>Protein engineering, 1991-12, Vol.4 (8), p.1009-1017</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-c7f768a047a89aaa473b00904edb6bb1c00bcf6c447f5908b37a470519afa7013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5342798$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1726270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabanov, Alexander V.</creatorcontrib><creatorcontrib>Klyachko, Natalya L.</creatorcontrib><creatorcontrib>Nametkin, Sergei N.</creatorcontrib><creatorcontrib>Merker, Steffen</creatorcontrib><creatorcontrib>Zaroza, Anna V.</creatorcontrib><creatorcontrib>Bunik, Vita I.</creatorcontrib><creatorcontrib>Ivanov, Mikhail V.</creatorcontrib><creatorcontrib>Levashov, Andrey V.</creatorcontrib><title>Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors</title><title>Protein engineering</title><addtitle>Protein Eng</addtitle><description>The size of the inner water cavity of reversed micelles formed in a triple system ‘water-surfactant-organic solvent’ can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles ‘uncouple’ such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceralde-hyde-3-phosphate dehydrogenase have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed.</description><subject>alkaline phosphatase</subject><subject>Alkaline Phosphatase - chemistry</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Centrifugation</subject><subject>Chymotrypsin - chemistry</subject><subject>Dioctyl Sulfosuccinic Acid - chemistry</subject><subject>Enzyme engineering</subject><subject>Enzymes - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glyceraldehyde-3-phosphate dehydrogenase</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry</subject><subject>ketoglutarate dehydrogenase</subject><subject>Ketoglutarate Dehydrogenase Complex - chemistry</subject><subject>L-Lactate Dehydrogenase - chemistry</subject><subject>lactic dehydrogenase</subject><subject>Macromolecular Substances</subject><subject>Methods. Procedures. Technologies</subject><subject>Micelles</subject><subject>Miscellaneous</subject><subject>Octanes - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>reversed micelles</subject><subject>Structure-Activity Relationship</subject><issn>1741-0126</issn><issn>0269-2139</issn><issn>1741-0134</issn><issn>1460-213X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkM-L1TAQx4so67p69yL0IKKH7iZtmrRHeaw-YcEfKIiXMM2bLNEmeZtp5a3g_27KK89Twnw_M_Odb1E85-ySs7652qc4oQtX4rLLBdY_KM65ErxivBEPT_9aPi6eEP1krJaK87PijKta1oqdF3-vw60LiMmF2zLa0s7BTC4GGEua9wk8mBR9HNHMI6TSRL8f8YC0sOtyKl9j-HPvkd6UMy1zEv7GRLgrvTM4jpkGKj1MyR2WUooJwUwx0dPikYWR8Nn6XhTf3l1_3Wyrm4_vP2ze3lSmkXyqjLJKdsCEgq4HAKGaIR_LBO4GOQzcMDYYK40QyrY964ZGZYa1vAcLKmdxUbw6zs2W72akSXtHizUIGGfSqlZC1j3LIDuC2SRRQqv3yXlI95ozvSSu16O10J1eEs8tL9bZ8-Bx97_hGHHWX646kIHRJgjG0QlrG1GrvstYdcQcTXg4yZB-aaka1ert9x962yrxqf6y0Z-bfzrlnYo</recordid><startdate>19911201</startdate><enddate>19911201</enddate><creator>Kabanov, Alexander V.</creator><creator>Klyachko, Natalya L.</creator><creator>Nametkin, Sergei N.</creator><creator>Merker, Steffen</creator><creator>Zaroza, Anna V.</creator><creator>Bunik, Vita I.</creator><creator>Ivanov, Mikhail V.</creator><creator>Levashov, Andrey V.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19911201</creationdate><title>Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors</title><author>Kabanov, Alexander V. ; Klyachko, Natalya L. ; Nametkin, Sergei N. ; Merker, Steffen ; Zaroza, Anna V. ; Bunik, Vita I. ; Ivanov, Mikhail V. ; Levashov, Andrey V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c7f768a047a89aaa473b00904edb6bb1c00bcf6c447f5908b37a470519afa7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>alkaline phosphatase</topic><topic>Alkaline Phosphatase - chemistry</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Centrifugation</topic><topic>Chymotrypsin - chemistry</topic><topic>Dioctyl Sulfosuccinic Acid - chemistry</topic><topic>Enzyme engineering</topic><topic>Enzymes - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glyceraldehyde-3-phosphate dehydrogenase</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry</topic><topic>ketoglutarate dehydrogenase</topic><topic>Ketoglutarate Dehydrogenase Complex - chemistry</topic><topic>L-Lactate Dehydrogenase - chemistry</topic><topic>lactic dehydrogenase</topic><topic>Macromolecular Substances</topic><topic>Methods. Procedures. Technologies</topic><topic>Micelles</topic><topic>Miscellaneous</topic><topic>Octanes - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>reversed micelles</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabanov, Alexander V.</creatorcontrib><creatorcontrib>Klyachko, Natalya L.</creatorcontrib><creatorcontrib>Nametkin, Sergei N.</creatorcontrib><creatorcontrib>Merker, Steffen</creatorcontrib><creatorcontrib>Zaroza, Anna V.</creatorcontrib><creatorcontrib>Bunik, Vita I.</creatorcontrib><creatorcontrib>Ivanov, Mikhail V.</creatorcontrib><creatorcontrib>Levashov, Andrey V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Protein engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabanov, Alexander V.</au><au>Klyachko, Natalya L.</au><au>Nametkin, Sergei N.</au><au>Merker, Steffen</au><au>Zaroza, Anna V.</au><au>Bunik, Vita I.</au><au>Ivanov, Mikhail V.</au><au>Levashov, Andrey V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors</atitle><jtitle>Protein engineering</jtitle><addtitle>Protein Eng</addtitle><date>1991-12-01</date><risdate>1991</risdate><volume>4</volume><issue>8</issue><spage>1009</spage><epage>1017</epage><pages>1009-1017</pages><issn>1741-0126</issn><issn>0269-2139</issn><eissn>1741-0134</eissn><eissn>1460-213X</eissn><coden>PRENE9</coden><abstract>The size of the inner water cavity of reversed micelles formed in a triple system ‘water-surfactant-organic solvent’ can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles ‘uncouple’ such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceralde-hyde-3-phosphate dehydrogenase have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>1726270</pmid><doi>10.1093/protein/4.8.1009</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-0126 |
ispartof | Protein engineering, 1991-12, Vol.4 (8), p.1009-1017 |
issn | 1741-0126 0269-2139 1741-0134 1460-213X |
language | eng |
recordid | cdi_proquest_miscellaneous_72746290 |
source | MEDLINE; Oxford University Press Journals Digital Archive Legacy; Alma/SFX Local Collection |
subjects | alkaline phosphatase Alkaline Phosphatase - chemistry Animals Biological and medical sciences Biotechnology Catalysis Centrifugation Chymotrypsin - chemistry Dioctyl Sulfosuccinic Acid - chemistry Enzyme engineering Enzymes - chemistry Fundamental and applied biological sciences. Psychology glyceraldehyde-3-phosphate dehydrogenase Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry ketoglutarate dehydrogenase Ketoglutarate Dehydrogenase Complex - chemistry L-Lactate Dehydrogenase - chemistry lactic dehydrogenase Macromolecular Substances Methods. Procedures. Technologies Micelles Miscellaneous Octanes - chemistry Protein Conformation Protein Engineering reversed micelles Structure-Activity Relationship |
title | Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20functional%20supramacromolecular%20complexes%20of%20proteins%20(enzymes)%20using%20reversed%20micelles%20as%20matrix%20microreactors&rft.jtitle=Protein%20engineering&rft.au=Kabanov,%20Alexander%20V.&rft.date=1991-12-01&rft.volume=4&rft.issue=8&rft.spage=1009&rft.epage=1017&rft.pages=1009-1017&rft.issn=1741-0126&rft.eissn=1741-0134&rft.coden=PRENE9&rft_id=info:doi/10.1093/protein/4.8.1009&rft_dat=%3Cproquest_cross%3E72746290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72746290&rft_id=info:pmid/1726270&rfr_iscdi=true |