Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors

The size of the inner water cavity of reversed micelles formed in a triple system ‘water-surfactant-organic solvent’ can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein engineering 1991-12, Vol.4 (8), p.1009-1017
Hauptverfasser: Kabanov, Alexander V., Klyachko, Natalya L., Nametkin, Sergei N., Merker, Steffen, Zaroza, Anna V., Bunik, Vita I., Ivanov, Mikhail V., Levashov, Andrey V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1017
container_issue 8
container_start_page 1009
container_title Protein engineering
container_volume 4
creator Kabanov, Alexander V.
Klyachko, Natalya L.
Nametkin, Sergei N.
Merker, Steffen
Zaroza, Anna V.
Bunik, Vita I.
Ivanov, Mikhail V.
Levashov, Andrey V.
description The size of the inner water cavity of reversed micelles formed in a triple system ‘water-surfactant-organic solvent’ can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles ‘uncouple’ such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceralde-hyde-3-phosphate dehydrogenase have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed.
doi_str_mv 10.1093/protein/4.8.1009
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72746290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72746290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-c7f768a047a89aaa473b00904edb6bb1c00bcf6c447f5908b37a470519afa7013</originalsourceid><addsrcrecordid>eNpFkM-L1TAQx4so67p69yL0IKKH7iZtmrRHeaw-YcEfKIiXMM2bLNEmeZtp5a3g_27KK89Twnw_M_Odb1E85-ySs7652qc4oQtX4rLLBdY_KM65ErxivBEPT_9aPi6eEP1krJaK87PijKta1oqdF3-vw60LiMmF2zLa0s7BTC4GGEua9wk8mBR9HNHMI6TSRL8f8YC0sOtyKl9j-HPvkd6UMy1zEv7GRLgrvTM4jpkGKj1MyR2WUooJwUwx0dPikYWR8Nn6XhTf3l1_3Wyrm4_vP2ze3lSmkXyqjLJKdsCEgq4HAKGaIR_LBO4GOQzcMDYYK40QyrY964ZGZYa1vAcLKmdxUbw6zs2W72akSXtHizUIGGfSqlZC1j3LIDuC2SRRQqv3yXlI95ozvSSu16O10J1eEs8tL9bZ8-Bx97_hGHHWX646kIHRJgjG0QlrG1GrvstYdcQcTXg4yZB-aaka1ert9x962yrxqf6y0Z-bfzrlnYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72746290</pqid></control><display><type>article</type><title>Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors</title><source>MEDLINE</source><source>Oxford University Press Journals Digital Archive Legacy</source><source>Alma/SFX Local Collection</source><creator>Kabanov, Alexander V. ; Klyachko, Natalya L. ; Nametkin, Sergei N. ; Merker, Steffen ; Zaroza, Anna V. ; Bunik, Vita I. ; Ivanov, Mikhail V. ; Levashov, Andrey V.</creator><creatorcontrib>Kabanov, Alexander V. ; Klyachko, Natalya L. ; Nametkin, Sergei N. ; Merker, Steffen ; Zaroza, Anna V. ; Bunik, Vita I. ; Ivanov, Mikhail V. ; Levashov, Andrey V.</creatorcontrib><description>The size of the inner water cavity of reversed micelles formed in a triple system ‘water-surfactant-organic solvent’ can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles ‘uncouple’ such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceralde-hyde-3-phosphate dehydrogenase have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed.</description><identifier>ISSN: 1741-0126</identifier><identifier>ISSN: 0269-2139</identifier><identifier>EISSN: 1741-0134</identifier><identifier>EISSN: 1460-213X</identifier><identifier>DOI: 10.1093/protein/4.8.1009</identifier><identifier>PMID: 1726270</identifier><identifier>CODEN: PRENE9</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>alkaline phosphatase ; Alkaline Phosphatase - chemistry ; Animals ; Biological and medical sciences ; Biotechnology ; Catalysis ; Centrifugation ; Chymotrypsin - chemistry ; Dioctyl Sulfosuccinic Acid - chemistry ; Enzyme engineering ; Enzymes - chemistry ; Fundamental and applied biological sciences. Psychology ; glyceraldehyde-3-phosphate dehydrogenase ; Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry ; ketoglutarate dehydrogenase ; Ketoglutarate Dehydrogenase Complex - chemistry ; L-Lactate Dehydrogenase - chemistry ; lactic dehydrogenase ; Macromolecular Substances ; Methods. Procedures. Technologies ; Micelles ; Miscellaneous ; Octanes - chemistry ; Protein Conformation ; Protein Engineering ; reversed micelles ; Structure-Activity Relationship</subject><ispartof>Protein engineering, 1991-12, Vol.4 (8), p.1009-1017</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-c7f768a047a89aaa473b00904edb6bb1c00bcf6c447f5908b37a470519afa7013</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5342798$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1726270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabanov, Alexander V.</creatorcontrib><creatorcontrib>Klyachko, Natalya L.</creatorcontrib><creatorcontrib>Nametkin, Sergei N.</creatorcontrib><creatorcontrib>Merker, Steffen</creatorcontrib><creatorcontrib>Zaroza, Anna V.</creatorcontrib><creatorcontrib>Bunik, Vita I.</creatorcontrib><creatorcontrib>Ivanov, Mikhail V.</creatorcontrib><creatorcontrib>Levashov, Andrey V.</creatorcontrib><title>Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors</title><title>Protein engineering</title><addtitle>Protein Eng</addtitle><description>The size of the inner water cavity of reversed micelles formed in a triple system ‘water-surfactant-organic solvent’ can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles ‘uncouple’ such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceralde-hyde-3-phosphate dehydrogenase have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed.</description><subject>alkaline phosphatase</subject><subject>Alkaline Phosphatase - chemistry</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Centrifugation</subject><subject>Chymotrypsin - chemistry</subject><subject>Dioctyl Sulfosuccinic Acid - chemistry</subject><subject>Enzyme engineering</subject><subject>Enzymes - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>glyceraldehyde-3-phosphate dehydrogenase</subject><subject>Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry</subject><subject>ketoglutarate dehydrogenase</subject><subject>Ketoglutarate Dehydrogenase Complex - chemistry</subject><subject>L-Lactate Dehydrogenase - chemistry</subject><subject>lactic dehydrogenase</subject><subject>Macromolecular Substances</subject><subject>Methods. Procedures. Technologies</subject><subject>Micelles</subject><subject>Miscellaneous</subject><subject>Octanes - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Engineering</subject><subject>reversed micelles</subject><subject>Structure-Activity Relationship</subject><issn>1741-0126</issn><issn>0269-2139</issn><issn>1741-0134</issn><issn>1460-213X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkM-L1TAQx4so67p69yL0IKKH7iZtmrRHeaw-YcEfKIiXMM2bLNEmeZtp5a3g_27KK89Twnw_M_Odb1E85-ySs7652qc4oQtX4rLLBdY_KM65ErxivBEPT_9aPi6eEP1krJaK87PijKta1oqdF3-vw60LiMmF2zLa0s7BTC4GGEua9wk8mBR9HNHMI6TSRL8f8YC0sOtyKl9j-HPvkd6UMy1zEv7GRLgrvTM4jpkGKj1MyR2WUooJwUwx0dPikYWR8Nn6XhTf3l1_3Wyrm4_vP2ze3lSmkXyqjLJKdsCEgq4HAKGaIR_LBO4GOQzcMDYYK40QyrY964ZGZYa1vAcLKmdxUbw6zs2W72akSXtHizUIGGfSqlZC1j3LIDuC2SRRQqv3yXlI95ozvSSu16O10J1eEs8tL9bZ8-Bx97_hGHHWX646kIHRJgjG0QlrG1GrvstYdcQcTXg4yZB-aaka1ert9x962yrxqf6y0Z-bfzrlnYo</recordid><startdate>19911201</startdate><enddate>19911201</enddate><creator>Kabanov, Alexander V.</creator><creator>Klyachko, Natalya L.</creator><creator>Nametkin, Sergei N.</creator><creator>Merker, Steffen</creator><creator>Zaroza, Anna V.</creator><creator>Bunik, Vita I.</creator><creator>Ivanov, Mikhail V.</creator><creator>Levashov, Andrey V.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19911201</creationdate><title>Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors</title><author>Kabanov, Alexander V. ; Klyachko, Natalya L. ; Nametkin, Sergei N. ; Merker, Steffen ; Zaroza, Anna V. ; Bunik, Vita I. ; Ivanov, Mikhail V. ; Levashov, Andrey V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-c7f768a047a89aaa473b00904edb6bb1c00bcf6c447f5908b37a470519afa7013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>alkaline phosphatase</topic><topic>Alkaline Phosphatase - chemistry</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Centrifugation</topic><topic>Chymotrypsin - chemistry</topic><topic>Dioctyl Sulfosuccinic Acid - chemistry</topic><topic>Enzyme engineering</topic><topic>Enzymes - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>glyceraldehyde-3-phosphate dehydrogenase</topic><topic>Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry</topic><topic>ketoglutarate dehydrogenase</topic><topic>Ketoglutarate Dehydrogenase Complex - chemistry</topic><topic>L-Lactate Dehydrogenase - chemistry</topic><topic>lactic dehydrogenase</topic><topic>Macromolecular Substances</topic><topic>Methods. Procedures. Technologies</topic><topic>Micelles</topic><topic>Miscellaneous</topic><topic>Octanes - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Engineering</topic><topic>reversed micelles</topic><topic>Structure-Activity Relationship</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabanov, Alexander V.</creatorcontrib><creatorcontrib>Klyachko, Natalya L.</creatorcontrib><creatorcontrib>Nametkin, Sergei N.</creatorcontrib><creatorcontrib>Merker, Steffen</creatorcontrib><creatorcontrib>Zaroza, Anna V.</creatorcontrib><creatorcontrib>Bunik, Vita I.</creatorcontrib><creatorcontrib>Ivanov, Mikhail V.</creatorcontrib><creatorcontrib>Levashov, Andrey V.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Protein engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabanov, Alexander V.</au><au>Klyachko, Natalya L.</au><au>Nametkin, Sergei N.</au><au>Merker, Steffen</au><au>Zaroza, Anna V.</au><au>Bunik, Vita I.</au><au>Ivanov, Mikhail V.</au><au>Levashov, Andrey V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors</atitle><jtitle>Protein engineering</jtitle><addtitle>Protein Eng</addtitle><date>1991-12-01</date><risdate>1991</risdate><volume>4</volume><issue>8</issue><spage>1009</spage><epage>1017</epage><pages>1009-1017</pages><issn>1741-0126</issn><issn>0269-2139</issn><eissn>1741-0134</eissn><eissn>1460-213X</eissn><coden>PRENE9</coden><abstract>The size of the inner water cavity of reversed micelles formed in a triple system ‘water-surfactant-organic solvent’ can be widely varied by changing the degree of surfactant hydration. This gives grounds to use reversed micelles as matrix microreactors for the design of supramolecular complexes of proteins. Using ultracentrifugation analysis, it has been demonstrated that the oligomeric composition of various enzymes (ketoglutarate dehydrogenase, alkaline phosphatase, lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase) solubilized in reversed micelles of Aerosol OT [sodium bis(2-ethylehexyl)sulfosuccinate] in octane changes upon variation of the degree of hydration. An oligomeric complex forms under conditions when the radius of the micelle inner cavity is big enough to incorporate this complex as a whole. At lower degrees of hydration the micelles ‘uncouple’ such complexes to their components. The catalytic properties of various oligomeric complexes have been studied. Possibilities of using reversed micelles for the separation of subunits of oligomeric enzymes under non-denaturating conditions have been demonstrated. In particular, the isolated subunits of alkaline phosphatase, lactic dehydrogenase and glyceralde-hyde-3-phosphate dehydrogenase have been found to be active in Aerosol OT reversed micelles. The dependences of the catalytic activity of oligomeric enzymes represent saw-like curves. The maxima of the catalytic activity observed at these curves relate to the functioning of various oligomeric forms of an enzyme. The radii of the micelle inner cavity under conditions when these maxima are observed correlate with the linear dimensions of the enzyme oligomeric forms. Correlation of the position of a maximum with the shape of an oligomeric complex is discussed.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>1726270</pmid><doi>10.1093/protein/4.8.1009</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1741-0126
ispartof Protein engineering, 1991-12, Vol.4 (8), p.1009-1017
issn 1741-0126
0269-2139
1741-0134
1460-213X
language eng
recordid cdi_proquest_miscellaneous_72746290
source MEDLINE; Oxford University Press Journals Digital Archive Legacy; Alma/SFX Local Collection
subjects alkaline phosphatase
Alkaline Phosphatase - chemistry
Animals
Biological and medical sciences
Biotechnology
Catalysis
Centrifugation
Chymotrypsin - chemistry
Dioctyl Sulfosuccinic Acid - chemistry
Enzyme engineering
Enzymes - chemistry
Fundamental and applied biological sciences. Psychology
glyceraldehyde-3-phosphate dehydrogenase
Glyceraldehyde-3-Phosphate Dehydrogenases - chemistry
ketoglutarate dehydrogenase
Ketoglutarate Dehydrogenase Complex - chemistry
L-Lactate Dehydrogenase - chemistry
lactic dehydrogenase
Macromolecular Substances
Methods. Procedures. Technologies
Micelles
Miscellaneous
Octanes - chemistry
Protein Conformation
Protein Engineering
reversed micelles
Structure-Activity Relationship
title Engineering of functional supramacromolecular complexes of proteins (enzymes) using reversed micelles as matrix microreactors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A42%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20functional%20supramacromolecular%20complexes%20of%20proteins%20(enzymes)%20using%20reversed%20micelles%20as%20matrix%20microreactors&rft.jtitle=Protein%20engineering&rft.au=Kabanov,%20Alexander%20V.&rft.date=1991-12-01&rft.volume=4&rft.issue=8&rft.spage=1009&rft.epage=1017&rft.pages=1009-1017&rft.issn=1741-0126&rft.eissn=1741-0134&rft.coden=PRENE9&rft_id=info:doi/10.1093/protein/4.8.1009&rft_dat=%3Cproquest_cross%3E72746290%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72746290&rft_id=info:pmid/1726270&rfr_iscdi=true