A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization

Due to increasing interest in solving real-world optimization problems using evolutionary algorithms (EAs), researchers have recently developed a number of real-parameter genetic algorithms (GAs). In these studies, the main research effort is spent on developing an efficient recombination operator....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolutionary computation 2002-12, Vol.10 (4), p.371-395
Hauptverfasser: Deb, Kalyanmoy, Anand, Ashish, Joshi, Dhiraj
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 395
container_issue 4
container_start_page 371
container_title Evolutionary computation
container_volume 10
creator Deb, Kalyanmoy
Anand, Ashish
Joshi, Dhiraj
description Due to increasing interest in solving real-world optimization problems using evolutionary algorithms (EAs), researchers have recently developed a number of real-parameter genetic algorithms (GAs). In these studies, the main research effort is spent on developing an efficient recombination operator. Such recombination operators use probability distributions around the parent solutions to create an offspring. Some operators emphasize solutions at the center of mass of parents and some around the parents. In this paper, we propose a generic parent-centric recombination operator (PCX) and a steady-state, elite-preserving, scalable, and computationally fast population-alteration model (we call the G3 model). The performance of the G3 model with the PCX operator is investigated on three commonly used test problems and is compared with a number of evolutionary and classical optimization algorithms including other real-parameter GAs with the unimodal normal distribution crossover (UNDX) and the simplex crossover (SPX) operators, the correlated self-adaptive evolution strategy, the covariance matrix adaptation evolution strategy (CMA-ES), the differential evolution technique, and the quasi-Newton method. The proposed approach is found to consistently and reliably perform better than all other methods used in the study. A scale-up study with problem sizes up to 500 variables shows a polynomial computational complexity of the proposed approach. This extensive study clearly demonstrates the power of the proposed technique in tackling real-parameter optimization problems.
doi_str_mv 10.1162/106365602760972767
format Article
fullrecord <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_72725720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72725720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-1bfd23d42d614740e196cbc6bfefbd866b56c5508a51b3d74637b24baaf814133</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi1EBZT2D3BAOXELnfFXssfVavmQkKhQe7bsxC5GyTrYzkrw6zHsSj0U9eKxrGfe8TyEnCFcIkr6A0EyKSTQRsKiKWdzQE5QMKgXDPhhuRegfieOydeUngCQUcAjcoyUC-BCnpCHZbUK4zRnnX3Y6GF4qdbO-c7bTa7W2zDMH-_xpVoOf0L0-XGsXIjVg9VD_VNHPdpsY3U_ZT_614-Qb-SL00Oy3_f1lPy-Wv9a3dR399e3q-Vd3XHZ5BqN6ynrOe0l8oaDxYXsTCeNs870rZRGyE4IaLVAw_qGS9YYyo3WrkWOjJ2Si13uFMPzbFNWo0-dHQa9sWFOqhihoqFQQLoDuxhSitapKfqx7KQQ1LtJ9a_J0nS-T5_NaPu_LXt1BbjaAaPP6inMsdhLym67sEXwXDHAthWKAsUyREGrXv30-aTLT4L-87U3wtiQhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72725720</pqid></control><display><type>article</type><title>A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization</title><source>MEDLINE</source><source>ACM Digital Library</source><source>MIT Press Journals</source><creator>Deb, Kalyanmoy ; Anand, Ashish ; Joshi, Dhiraj</creator><creatorcontrib>Deb, Kalyanmoy ; Anand, Ashish ; Joshi, Dhiraj</creatorcontrib><description>Due to increasing interest in solving real-world optimization problems using evolutionary algorithms (EAs), researchers have recently developed a number of real-parameter genetic algorithms (GAs). In these studies, the main research effort is spent on developing an efficient recombination operator. Such recombination operators use probability distributions around the parent solutions to create an offspring. Some operators emphasize solutions at the center of mass of parents and some around the parents. In this paper, we propose a generic parent-centric recombination operator (PCX) and a steady-state, elite-preserving, scalable, and computationally fast population-alteration model (we call the G3 model). The performance of the G3 model with the PCX operator is investigated on three commonly used test problems and is compared with a number of evolutionary and classical optimization algorithms including other real-parameter GAs with the unimodal normal distribution crossover (UNDX) and the simplex crossover (SPX) operators, the correlated self-adaptive evolution strategy, the covariance matrix adaptation evolution strategy (CMA-ES), the differential evolution technique, and the quasi-Newton method. The proposed approach is found to consistently and reliably perform better than all other methods used in the study. A scale-up study with problem sizes up to 500 variables shows a polynomial computational complexity of the proposed approach. This extensive study clearly demonstrates the power of the proposed technique in tackling real-parameter optimization problems.</description><identifier>ISSN: 1063-6560</identifier><identifier>EISSN: 1530-9304</identifier><identifier>DOI: 10.1162/106365602760972767</identifier><identifier>PMID: 12450456</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Biological Evolution ; Computing Methodologies ; covariance matrix adaptation ; differential evolution ; Models, Theoretical ; parent-centric recombination ; quasi-Newton method ; Real-parameter optimization ; Reproducibility of Results ; scalable evolutionary algorithms ; self-adaptive evolution strategy ; simulated binary crossover</subject><ispartof>Evolutionary computation, 2002-12, Vol.10 (4), p.371-395</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-1bfd23d42d614740e196cbc6bfefbd866b56c5508a51b3d74637b24baaf814133</citedby><cites>FETCH-LOGICAL-c467t-1bfd23d42d614740e196cbc6bfefbd866b56c5508a51b3d74637b24baaf814133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/evco/article/doi/10.1162/106365602760972767$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,53984,53985</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12450456$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deb, Kalyanmoy</creatorcontrib><creatorcontrib>Anand, Ashish</creatorcontrib><creatorcontrib>Joshi, Dhiraj</creatorcontrib><title>A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization</title><title>Evolutionary computation</title><addtitle>Evol Comput</addtitle><description>Due to increasing interest in solving real-world optimization problems using evolutionary algorithms (EAs), researchers have recently developed a number of real-parameter genetic algorithms (GAs). In these studies, the main research effort is spent on developing an efficient recombination operator. Such recombination operators use probability distributions around the parent solutions to create an offspring. Some operators emphasize solutions at the center of mass of parents and some around the parents. In this paper, we propose a generic parent-centric recombination operator (PCX) and a steady-state, elite-preserving, scalable, and computationally fast population-alteration model (we call the G3 model). The performance of the G3 model with the PCX operator is investigated on three commonly used test problems and is compared with a number of evolutionary and classical optimization algorithms including other real-parameter GAs with the unimodal normal distribution crossover (UNDX) and the simplex crossover (SPX) operators, the correlated self-adaptive evolution strategy, the covariance matrix adaptation evolution strategy (CMA-ES), the differential evolution technique, and the quasi-Newton method. The proposed approach is found to consistently and reliably perform better than all other methods used in the study. A scale-up study with problem sizes up to 500 variables shows a polynomial computational complexity of the proposed approach. This extensive study clearly demonstrates the power of the proposed technique in tackling real-parameter optimization problems.</description><subject>Algorithms</subject><subject>Biological Evolution</subject><subject>Computing Methodologies</subject><subject>covariance matrix adaptation</subject><subject>differential evolution</subject><subject>Models, Theoretical</subject><subject>parent-centric recombination</subject><subject>quasi-Newton method</subject><subject>Real-parameter optimization</subject><subject>Reproducibility of Results</subject><subject>scalable evolutionary algorithms</subject><subject>self-adaptive evolution strategy</subject><subject>simulated binary crossover</subject><issn>1063-6560</issn><issn>1530-9304</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1P3DAQhi1EBZT2D3BAOXELnfFXssfVavmQkKhQe7bsxC5GyTrYzkrw6zHsSj0U9eKxrGfe8TyEnCFcIkr6A0EyKSTQRsKiKWdzQE5QMKgXDPhhuRegfieOydeUngCQUcAjcoyUC-BCnpCHZbUK4zRnnX3Y6GF4qdbO-c7bTa7W2zDMH-_xpVoOf0L0-XGsXIjVg9VD_VNHPdpsY3U_ZT_614-Qb-SL00Oy3_f1lPy-Wv9a3dR399e3q-Vd3XHZ5BqN6ynrOe0l8oaDxYXsTCeNs870rZRGyE4IaLVAw_qGS9YYyo3WrkWOjJ2Si13uFMPzbFNWo0-dHQa9sWFOqhihoqFQQLoDuxhSitapKfqx7KQQ1LtJ9a_J0nS-T5_NaPu_LXt1BbjaAaPP6inMsdhLym67sEXwXDHAthWKAsUyREGrXv30-aTLT4L-87U3wtiQhw</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Deb, Kalyanmoy</creator><creator>Anand, Ashish</creator><creator>Joshi, Dhiraj</creator><general>MIT Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20021201</creationdate><title>A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization</title><author>Deb, Kalyanmoy ; Anand, Ashish ; Joshi, Dhiraj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-1bfd23d42d614740e196cbc6bfefbd866b56c5508a51b3d74637b24baaf814133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Algorithms</topic><topic>Biological Evolution</topic><topic>Computing Methodologies</topic><topic>covariance matrix adaptation</topic><topic>differential evolution</topic><topic>Models, Theoretical</topic><topic>parent-centric recombination</topic><topic>quasi-Newton method</topic><topic>Real-parameter optimization</topic><topic>Reproducibility of Results</topic><topic>scalable evolutionary algorithms</topic><topic>self-adaptive evolution strategy</topic><topic>simulated binary crossover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deb, Kalyanmoy</creatorcontrib><creatorcontrib>Anand, Ashish</creatorcontrib><creatorcontrib>Joshi, Dhiraj</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deb, Kalyanmoy</au><au>Anand, Ashish</au><au>Joshi, Dhiraj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization</atitle><jtitle>Evolutionary computation</jtitle><addtitle>Evol Comput</addtitle><date>2002-12-01</date><risdate>2002</risdate><volume>10</volume><issue>4</issue><spage>371</spage><epage>395</epage><pages>371-395</pages><issn>1063-6560</issn><eissn>1530-9304</eissn><abstract>Due to increasing interest in solving real-world optimization problems using evolutionary algorithms (EAs), researchers have recently developed a number of real-parameter genetic algorithms (GAs). In these studies, the main research effort is spent on developing an efficient recombination operator. Such recombination operators use probability distributions around the parent solutions to create an offspring. Some operators emphasize solutions at the center of mass of parents and some around the parents. In this paper, we propose a generic parent-centric recombination operator (PCX) and a steady-state, elite-preserving, scalable, and computationally fast population-alteration model (we call the G3 model). The performance of the G3 model with the PCX operator is investigated on three commonly used test problems and is compared with a number of evolutionary and classical optimization algorithms including other real-parameter GAs with the unimodal normal distribution crossover (UNDX) and the simplex crossover (SPX) operators, the correlated self-adaptive evolution strategy, the covariance matrix adaptation evolution strategy (CMA-ES), the differential evolution technique, and the quasi-Newton method. The proposed approach is found to consistently and reliably perform better than all other methods used in the study. A scale-up study with problem sizes up to 500 variables shows a polynomial computational complexity of the proposed approach. This extensive study clearly demonstrates the power of the proposed technique in tackling real-parameter optimization problems.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>12450456</pmid><doi>10.1162/106365602760972767</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-6560
ispartof Evolutionary computation, 2002-12, Vol.10 (4), p.371-395
issn 1063-6560
1530-9304
language eng
recordid cdi_proquest_miscellaneous_72725720
source MEDLINE; ACM Digital Library; MIT Press Journals
subjects Algorithms
Biological Evolution
Computing Methodologies
covariance matrix adaptation
differential evolution
Models, Theoretical
parent-centric recombination
quasi-Newton method
Real-parameter optimization
Reproducibility of Results
scalable evolutionary algorithms
self-adaptive evolution strategy
simulated binary crossover
title A Computationally Efficient Evolutionary Algorithm for Real-Parameter Optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computationally%20Efficient%20Evolutionary%20Algorithm%20for%20Real-Parameter%20Optimization&rft.jtitle=Evolutionary%20computation&rft.au=Deb,%20Kalyanmoy&rft.date=2002-12-01&rft.volume=10&rft.issue=4&rft.spage=371&rft.epage=395&rft.pages=371-395&rft.issn=1063-6560&rft.eissn=1530-9304&rft_id=info:doi/10.1162/106365602760972767&rft_dat=%3Cproquest_mit_j%3E72725720%3C/proquest_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72725720&rft_id=info:pmid/12450456&rfr_iscdi=true