Vascularized islet-cell transplantation in miniature swine. I. Preparation of vascularized islet kidneys

Whereas clinical pancreatic transplantation has been highly successful in correcting the hyperglycemia of insulin-dependent diabetes mellitus (type 1), the results of islet transplantation have been disappointing. This discrepancy may be because of, at least in part, nonspecific loss of islets durin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transplantation 2002-11, Vol.74 (9), p.1223-1230
Hauptverfasser: KUMAGAI, Naoki, O'NEIL, John J, SACHS, David H, YAMADA, Kazuhiko, BARTH, Rolf N, LAMATTINA, John C, UTSUGI, Ryu, MORAN, Shannon G, YAMAMOTO, Shin, VAGEFI, Parsia A, KITAMURA, Hiroshi, KAMANO, Chisako
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Whereas clinical pancreatic transplantation has been highly successful in correcting the hyperglycemia of insulin-dependent diabetes mellitus (type 1), the results of islet transplantation have been disappointing. This discrepancy may be because of, at least in part, nonspecific loss of islets during the time required for revascularization. To test this hypothesis, we have designed composite kidney grafts containing vascularized autologous islets that can be used to compare the engraftment potential of vascularized versus nonvascularized islet tissue. (1) Islet-cell isolation: miniature swine underwent either partial pancreatectomy to isolate autologous islets or total pancreatectomy to isolate minor antigen-mismatched islets. Islets were purified from excised pancreatic tissue by enzymatic digestion and discontinuous density gradient purification. Isolated islets were cultured for 3 days before transplant. (2) Creation of vascularized islet kidneys (IK): autologous islets alone (n=6), minor-mismatched islets alone (n=3), and minor-mismatched islets plus simultaneous autologous thymic tissue (n=3) were transplanted beneath the renal capsule of juvenile miniature swine. Minor antigen-mismatched islets were also transplanted into both the vascularized thymic graft of a thymokidney (to produce a thymo-islet kidney [TIK]) and the contralateral native kidney (n=3) and both the host thymus and beneath the renal capsule (n=2). All recipients receiving minor-mismatched islets were treated with a 12-day intravenous (IV) course of either cyclosporine A (CsA) at 10 mg/kg per day or FK506 at 0.15 mg/kg per day. (3) Assessment of Function: to evaluate the function of the transplanted islets, three animals bearing TIK and IK underwent total pancreatectomy 3 months following islet transplantation. (1) Islet-cell yields: an average of 254,960+/-51,879 (4,452+/-932 islet equivalents [IEQ]/gram of pancreas) and 374,410+/-9,548 (4,183+/-721 IEQ/gram of pancreas) viable islets were obtained by partial pancreatectomy and complete pancreatectomy, respectively. (2) Creation of IK: autologous islets engrafted indefinitely, whereas recipients of minor-mismatched islets alone rejected the islets within 2 months. However, when minor-mismatched islets were implanted into both the thymokidney and the contralateral kidney of animals bearing a thymokidney, the islets engrafted indefinitely in both sites (>3 months). Simultaneous implantation of islets into the host thymus and under the
ISSN:0041-1337
1534-6080
DOI:10.1097/00007890-200211150-00005