The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo‐ and heterodimers in vivo

Summary The transcription factors Pdr1p and Pdr3p from Saccharomyces cerevisiae mediate pleiotropic drug resistance (PDR) by controlling expression of ATP‐binding cassette (ABC) transporters such as Pdr5p, Snq2p and Yor1p. Previous in vitro studies demonstrated that Pdr1p and Pdr3p recognize so‐call...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2002-12, Vol.46 (5), p.1429-1440
Hauptverfasser: Mamnun, Yasmine M., Pandjaitan, Rudy, Mahé, Yannick, Delahodde, Agnés, Kuchler, Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1440
container_issue 5
container_start_page 1429
container_title Molecular microbiology
container_volume 46
creator Mamnun, Yasmine M.
Pandjaitan, Rudy
Mahé, Yannick
Delahodde, Agnés
Kuchler, Karl
description Summary The transcription factors Pdr1p and Pdr3p from Saccharomyces cerevisiae mediate pleiotropic drug resistance (PDR) by controlling expression of ATP‐binding cassette (ABC) transporters such as Pdr5p, Snq2p and Yor1p. Previous in vitro studies demonstrated that Pdr1p and Pdr3p recognize so‐called pleiotropic drug resistance elements (PDREs) in the promoters of target genes. In this study, we show that both Pdr1p and Pdr3p are phosphoproteins; Pdr3p isoforms migrate as two bands in gel electrophoresis, reflecting two distinct phosphorylation states. Most importantly, native co‐immunoprecipitation experiments, using functional epitope‐tagged Pdr1p/Pdr3p variants, demonstrate that Pdr1p and Pdr3p can form both homo‐ and heterodimers in vivo. Furthermore, in vivo footprinting of PDRE‐containing promoters demonstrate that Pdr1p/Pdr3p constitutively occupy both perfect and degenerate PDREs in vivo. Thus, in addition to interaction with other regulators, differential dimerization provides a plausible explanation for the observation that Pdr3p and Pdr1p can both positively and negatively control PDR promoters with different combinations of perfect and degenerate PDREs.
doi_str_mv 10.1046/j.1365-2958.2002.03262.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72716272</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72716272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4892-8e3b2d9cff122d91ece7d53e5d12d826e48788ffb61aecafe6333d51e030c2d43</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS0EokPhFZDFAsEiwT-J4yxYoPLTSq1aoSKxszz2zYxHSZzaSemwQDwCz8iT1OmMQOoGVvdI_s6RrA8hTElOSSHebHLKRZmxupQ5I4TlhDPB8psHaPHn4SFakLokGZfs6wF6EuOGEMqJ4I_RAWVFyRmrFujH5RrwFnQc8XfXG9y4fgUBB1hNrR59iPjCBjpg3ds58QEb34_Bt3howfmUBmewDdMqdaKLo-4N4FcX7z-_xjrite_875-_7uprGCF46zpIq67H1-7aP0WPGt1GeLa_h-jLxw-XR8fZ6fmnk6N3p5kpZM0yCXzJbG2ahrJ0KRiobMmhtJRZyQQUspKyaZaCajC6AcE5tyUFwolhtuCH6OVudwj-aoI4qs5FA22re_BTVBWrqGAV-ydIZcK4kAl8cQ_c-Cn06ROK1qKkghRVguQOMsHHGKBRQ3CdDltFiZpNqo2ahalZmJpNqjuT6iZVn-_3p2UH9m9xry4Bb3fAN9fC9r-H1dnZyZz4LcrErgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196516047</pqid></control><display><type>article</type><title>The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo‐ and heterodimers in vivo</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Free Content</source><source>Free Full-Text Journals in Chemistry</source><creator>Mamnun, Yasmine M. ; Pandjaitan, Rudy ; Mahé, Yannick ; Delahodde, Agnés ; Kuchler, Karl</creator><creatorcontrib>Mamnun, Yasmine M. ; Pandjaitan, Rudy ; Mahé, Yannick ; Delahodde, Agnés ; Kuchler, Karl</creatorcontrib><description>Summary The transcription factors Pdr1p and Pdr3p from Saccharomyces cerevisiae mediate pleiotropic drug resistance (PDR) by controlling expression of ATP‐binding cassette (ABC) transporters such as Pdr5p, Snq2p and Yor1p. Previous in vitro studies demonstrated that Pdr1p and Pdr3p recognize so‐called pleiotropic drug resistance elements (PDREs) in the promoters of target genes. In this study, we show that both Pdr1p and Pdr3p are phosphoproteins; Pdr3p isoforms migrate as two bands in gel electrophoresis, reflecting two distinct phosphorylation states. Most importantly, native co‐immunoprecipitation experiments, using functional epitope‐tagged Pdr1p/Pdr3p variants, demonstrate that Pdr1p and Pdr3p can form both homo‐ and heterodimers in vivo. Furthermore, in vivo footprinting of PDRE‐containing promoters demonstrate that Pdr1p/Pdr3p constitutively occupy both perfect and degenerate PDREs in vivo. Thus, in addition to interaction with other regulators, differential dimerization provides a plausible explanation for the observation that Pdr3p and Pdr1p can both positively and negatively control PDR promoters with different combinations of perfect and degenerate PDREs.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1046/j.1365-2958.2002.03262.x</identifier><identifier>PMID: 12453227</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; Dimerization ; DNA Footprinting ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; Drug Resistance, Multiple, Fungal - genetics ; Gene Expression Regulation, Fungal ; Promoter Regions, Genetic - genetics ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins ; Trans-Activators - chemistry ; Trans-Activators - metabolism ; Transcription Factors - chemistry ; Transcription Factors - metabolism ; Transcription, Genetic ; Zinc Fingers</subject><ispartof>Molecular microbiology, 2002-12, Vol.46 (5), p.1429-1440</ispartof><rights>Copyright Blackwell Scientific Publications Ltd. Dec 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4892-8e3b2d9cff122d91ece7d53e5d12d826e48788ffb61aecafe6333d51e030c2d43</citedby><cites>FETCH-LOGICAL-c4892-8e3b2d9cff122d91ece7d53e5d12d826e48788ffb61aecafe6333d51e030c2d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2958.2002.03262.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2958.2002.03262.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12453227$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mamnun, Yasmine M.</creatorcontrib><creatorcontrib>Pandjaitan, Rudy</creatorcontrib><creatorcontrib>Mahé, Yannick</creatorcontrib><creatorcontrib>Delahodde, Agnés</creatorcontrib><creatorcontrib>Kuchler, Karl</creatorcontrib><title>The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo‐ and heterodimers in vivo</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary The transcription factors Pdr1p and Pdr3p from Saccharomyces cerevisiae mediate pleiotropic drug resistance (PDR) by controlling expression of ATP‐binding cassette (ABC) transporters such as Pdr5p, Snq2p and Yor1p. Previous in vitro studies demonstrated that Pdr1p and Pdr3p recognize so‐called pleiotropic drug resistance elements (PDREs) in the promoters of target genes. In this study, we show that both Pdr1p and Pdr3p are phosphoproteins; Pdr3p isoforms migrate as two bands in gel electrophoresis, reflecting two distinct phosphorylation states. Most importantly, native co‐immunoprecipitation experiments, using functional epitope‐tagged Pdr1p/Pdr3p variants, demonstrate that Pdr1p and Pdr3p can form both homo‐ and heterodimers in vivo. Furthermore, in vivo footprinting of PDRE‐containing promoters demonstrate that Pdr1p/Pdr3p constitutively occupy both perfect and degenerate PDREs in vivo. Thus, in addition to interaction with other regulators, differential dimerization provides a plausible explanation for the observation that Pdr3p and Pdr1p can both positively and negatively control PDR promoters with different combinations of perfect and degenerate PDREs.</description><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Dimerization</subject><subject>DNA Footprinting</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drug Resistance, Multiple, Fungal - genetics</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Trans-Activators - chemistry</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Zinc Fingers</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAUhS0EokPhFZDFAsEiwT-J4yxYoPLTSq1aoSKxszz2zYxHSZzaSemwQDwCz8iT1OmMQOoGVvdI_s6RrA8hTElOSSHebHLKRZmxupQ5I4TlhDPB8psHaPHn4SFakLokGZfs6wF6EuOGEMqJ4I_RAWVFyRmrFujH5RrwFnQc8XfXG9y4fgUBB1hNrR59iPjCBjpg3ds58QEb34_Bt3howfmUBmewDdMqdaKLo-4N4FcX7z-_xjrite_875-_7uprGCF46zpIq67H1-7aP0WPGt1GeLa_h-jLxw-XR8fZ6fmnk6N3p5kpZM0yCXzJbG2ahrJ0KRiobMmhtJRZyQQUspKyaZaCajC6AcE5tyUFwolhtuCH6OVudwj-aoI4qs5FA22re_BTVBWrqGAV-ydIZcK4kAl8cQ_c-Cn06ROK1qKkghRVguQOMsHHGKBRQ3CdDltFiZpNqo2ahalZmJpNqjuT6iZVn-_3p2UH9m9xry4Bb3fAN9fC9r-H1dnZyZz4LcrErgs</recordid><startdate>200212</startdate><enddate>200212</enddate><creator>Mamnun, Yasmine M.</creator><creator>Pandjaitan, Rudy</creator><creator>Mahé, Yannick</creator><creator>Delahodde, Agnés</creator><creator>Kuchler, Karl</creator><general>Blackwell Science Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200212</creationdate><title>The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo‐ and heterodimers in vivo</title><author>Mamnun, Yasmine M. ; Pandjaitan, Rudy ; Mahé, Yannick ; Delahodde, Agnés ; Kuchler, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4892-8e3b2d9cff122d91ece7d53e5d12d826e48788ffb61aecafe6333d51e030c2d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Dimerization</topic><topic>DNA Footprinting</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drug Resistance, Multiple, Fungal - genetics</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Trans-Activators - chemistry</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Zinc Fingers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamnun, Yasmine M.</creatorcontrib><creatorcontrib>Pandjaitan, Rudy</creatorcontrib><creatorcontrib>Mahé, Yannick</creatorcontrib><creatorcontrib>Delahodde, Agnés</creatorcontrib><creatorcontrib>Kuchler, Karl</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mamnun, Yasmine M.</au><au>Pandjaitan, Rudy</au><au>Mahé, Yannick</au><au>Delahodde, Agnés</au><au>Kuchler, Karl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo‐ and heterodimers in vivo</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2002-12</date><risdate>2002</risdate><volume>46</volume><issue>5</issue><spage>1429</spage><epage>1440</epage><pages>1429-1440</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary The transcription factors Pdr1p and Pdr3p from Saccharomyces cerevisiae mediate pleiotropic drug resistance (PDR) by controlling expression of ATP‐binding cassette (ABC) transporters such as Pdr5p, Snq2p and Yor1p. Previous in vitro studies demonstrated that Pdr1p and Pdr3p recognize so‐called pleiotropic drug resistance elements (PDREs) in the promoters of target genes. In this study, we show that both Pdr1p and Pdr3p are phosphoproteins; Pdr3p isoforms migrate as two bands in gel electrophoresis, reflecting two distinct phosphorylation states. Most importantly, native co‐immunoprecipitation experiments, using functional epitope‐tagged Pdr1p/Pdr3p variants, demonstrate that Pdr1p and Pdr3p can form both homo‐ and heterodimers in vivo. Furthermore, in vivo footprinting of PDRE‐containing promoters demonstrate that Pdr1p/Pdr3p constitutively occupy both perfect and degenerate PDREs in vivo. Thus, in addition to interaction with other regulators, differential dimerization provides a plausible explanation for the observation that Pdr3p and Pdr1p can both positively and negatively control PDR promoters with different combinations of perfect and degenerate PDREs.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>12453227</pmid><doi>10.1046/j.1365-2958.2002.03262.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2002-12, Vol.46 (5), p.1429-1440
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_72716272
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Free Content; Free Full-Text Journals in Chemistry
subjects ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - metabolism
Dimerization
DNA Footprinting
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - metabolism
Drug Resistance, Multiple, Fungal - genetics
Gene Expression Regulation, Fungal
Promoter Regions, Genetic - genetics
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins
Trans-Activators - chemistry
Trans-Activators - metabolism
Transcription Factors - chemistry
Transcription Factors - metabolism
Transcription, Genetic
Zinc Fingers
title The yeast zinc finger regulators Pdr1p and Pdr3p control pleiotropic drug resistance (PDR) as homo‐ and heterodimers in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A14%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20yeast%20zinc%20finger%20regulators%20Pdr1p%20and%20Pdr3p%20control%20pleiotropic%20drug%20resistance%20(PDR)%20as%20homo%E2%80%90%20and%20heterodimers%20in%20vivo&rft.jtitle=Molecular%20microbiology&rft.au=Mamnun,%20Yasmine%20M.&rft.date=2002-12&rft.volume=46&rft.issue=5&rft.spage=1429&rft.epage=1440&rft.pages=1429-1440&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1046/j.1365-2958.2002.03262.x&rft_dat=%3Cproquest_cross%3E72716272%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=196516047&rft_id=info:pmid/12453227&rfr_iscdi=true