Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice

Dysregulation of adipocyte-derived bioactive molecules plays an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the injured artery from the plasma and suppressed endothelial inflammatory response and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circulation (New York, N.Y.) N.Y.), 2002-11, Vol.106 (22), p.2767-2770
Hauptverfasser: OKAMOTO, Yoshihisa, KIHARA, Shinji, TERASAKA, Naoki, INABA, Toshimori, FUNAHASHI, Tohru, MATSUZAWA, Yuji, OUCHI, Noriyuki, NISHIDA, Makoto, ARITA, Yukio, KUMADA, Masahiro, OHASHI, Koji, SAKAI, Naohiko, SHIMOMURA, Iichiro, KOBAYASHI, Hideki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2770
container_issue 22
container_start_page 2767
container_title Circulation (New York, N.Y.)
container_volume 106
creator OKAMOTO, Yoshihisa
KIHARA, Shinji
TERASAKA, Naoki
INABA, Toshimori
FUNAHASHI, Tohru
MATSUZAWA, Yuji
OUCHI, Noriyuki
NISHIDA, Makoto
ARITA, Yukio
KUMADA, Masahiro
OHASHI, Koji
SAKAI, Naohiko
SHIMOMURA, Iichiro
KOBAYASHI, Hideki
description Dysregulation of adipocyte-derived bioactive molecules plays an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the injured artery from the plasma and suppressed endothelial inflammatory response and vascular smooth muscle cell proliferation, as well as macrophage-to-foam cell transformation in vitro. The current study investigated whether the increased plasma adiponectin could actually reduce atherosclerosis in vivo. Apolipoprotein E-deficient mice were treated with recombinant adenovirus expressing human adiponectin (Ad-APN) or beta-galactosidase (Ad-betagal). The plasma adiponectin levels in Ad-APN-treated mice increased 48 times as much as those in Ad-betagal treated mice. On the 14th day after injection, the lesion formation in aortic sinus was inhibited in Ad-APN-treated mice by 30% compared with Ad-betagal-treated mice (P
doi_str_mv 10.1161/01.cir.0000042707.50032.19
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72709561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>264464811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c538t-adfd3f96b13df9a94482ac4ee37751ef68b67a5f4a0d5e989b6ab16d017cbb463</originalsourceid><addsrcrecordid>eNpdkd9LHDEQx0Ox6NX6L8gh6NtuM_m58U0ObQWhUNrnkE0mNLK3eya7D_735vTgwDxM-DKfmUy-Q8gV0BZAwQ8KrU-5pfsjmKa6lZRy1oL5QlYgmWiE5OaErGreNJozdka-lfJcpeJanpIzYEJClSvycBfSbhrRz2lcZwyLx7J283_MU_HDPqayrim3m4YK7vI0Y5X3TcCYfMJxXm-Tx-_ka3RDwYvDfU7-Pdz_3fxqnn7_fNzcPTVe8m5uXIiBR6N64CEaZ4TomPMCkWstAaPqeqWdjMLRINF0pleuBxUoaN_3QvFzcvPRtw7ysmCZ7TYVj8PgRpyWYnW1w0gFFbz6BD5PSx7rbJYB09wo3lXo9gPy9Z8lY7S7nLYuv1qgdm-1pWA3j3_s0Wr7brUFU4svDy8s_RbDsfTgbQWuD4Ar3g0xu9GncuSEYaDqpt4AF62Hrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212739638</pqid></control><display><type>article</type><title>Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice</title><source>MEDLINE</source><source>American Heart Association Journals</source><source>Journals@Ovid Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>OKAMOTO, Yoshihisa ; KIHARA, Shinji ; TERASAKA, Naoki ; INABA, Toshimori ; FUNAHASHI, Tohru ; MATSUZAWA, Yuji ; OUCHI, Noriyuki ; NISHIDA, Makoto ; ARITA, Yukio ; KUMADA, Masahiro ; OHASHI, Koji ; SAKAI, Naohiko ; SHIMOMURA, Iichiro ; KOBAYASHI, Hideki</creator><creatorcontrib>OKAMOTO, Yoshihisa ; KIHARA, Shinji ; TERASAKA, Naoki ; INABA, Toshimori ; FUNAHASHI, Tohru ; MATSUZAWA, Yuji ; OUCHI, Noriyuki ; NISHIDA, Makoto ; ARITA, Yukio ; KUMADA, Masahiro ; OHASHI, Koji ; SAKAI, Naohiko ; SHIMOMURA, Iichiro ; KOBAYASHI, Hideki</creatorcontrib><description>Dysregulation of adipocyte-derived bioactive molecules plays an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the injured artery from the plasma and suppressed endothelial inflammatory response and vascular smooth muscle cell proliferation, as well as macrophage-to-foam cell transformation in vitro. The current study investigated whether the increased plasma adiponectin could actually reduce atherosclerosis in vivo. Apolipoprotein E-deficient mice were treated with recombinant adenovirus expressing human adiponectin (Ad-APN) or beta-galactosidase (Ad-betagal). The plasma adiponectin levels in Ad-APN-treated mice increased 48 times as much as those in Ad-betagal treated mice. On the 14th day after injection, the lesion formation in aortic sinus was inhibited in Ad-APN-treated mice by 30% compared with Ad-betagal-treated mice (P&lt;0.05). In the lesions of Ad-APN-treated mice, the lipid droplets became smaller compared with Ad-betagal-treated mice (P&lt;0.01). Immunohistochemical analyses demonstrated that the adenovirus-mediated adiponectin migrate to foam cells in the fatty streak lesions. The real-time quantitative polymerase chain reaction revealed that Ad-APN treatment significantly suppressed the mRNA levels of vascular cell adhesion molecule-1 by 29% and class A scavenger receptor by 34%, and tended to reduce levels of tumor necrosis factor-alpha without affecting those of CD36 in the aortic tissue. These findings documented for the first time that elevated plasma adiponectin suppresses the development of atherosclerosis in vivo.</description><identifier>ISSN: 0009-7322</identifier><identifier>EISSN: 1524-4539</identifier><identifier>DOI: 10.1161/01.cir.0000042707.50032.19</identifier><identifier>PMID: 12451000</identifier><identifier>CODEN: CIRCAZ</identifier><language>eng</language><publisher>Hagerstown, MD: Lippincott Williams &amp; Wilkins</publisher><subject>Adiponectin ; Animals ; Apolipoproteins E - blood ; Apolipoproteins E - deficiency ; Apolipoproteins E - genetics ; Arteriosclerosis - genetics ; Arteriosclerosis - pathology ; Arteriosclerosis - prevention &amp; control ; Atherosclerosis (general aspects, experimental research) ; Biological and medical sciences ; Blood and lymphatic vessels ; Cardiology. Vascular system ; CD36 Antigens - genetics ; CD36 Antigens - metabolism ; Disease Models, Animal ; Disease Progression ; Foam Cells - metabolism ; Foam Cells - pathology ; Genetic Therapy ; Genetic Vectors - administration &amp; dosage ; Genetic Vectors - genetics ; Immunohistochemistry ; Intercellular Signaling Peptides and Proteins ; Macrophages - pathology ; Male ; Medical sciences ; Membrane Proteins ; Mice ; Mice, Knockout ; Muscle, Smooth, Vascular - pathology ; Proteins - genetics ; Proteins - metabolism ; Proteins - pharmacology ; Receptors, Immunologic - genetics ; Receptors, Immunologic - metabolism ; Receptors, Lipoprotein ; Receptors, Scavenger ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - analysis ; RNA, Messenger - metabolism ; Scavenger Receptors, Class A ; Scavenger Receptors, Class B ; Sinus of Valsalva - drug effects ; Sinus of Valsalva - pathology ; Tumor Necrosis Factor-alpha - genetics ; Tumor Necrosis Factor-alpha - metabolism ; Vascular Cell Adhesion Molecule-1 - genetics ; Vascular Cell Adhesion Molecule-1 - metabolism</subject><ispartof>Circulation (New York, N.Y.), 2002-11, Vol.106 (22), p.2767-2770</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Nov 26, 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c538t-adfd3f96b13df9a94482ac4ee37751ef68b67a5f4a0d5e989b6ab16d017cbb463</citedby><cites>FETCH-LOGICAL-c538t-adfd3f96b13df9a94482ac4ee37751ef68b67a5f4a0d5e989b6ab16d017cbb463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3687,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14921645$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12451000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>OKAMOTO, Yoshihisa</creatorcontrib><creatorcontrib>KIHARA, Shinji</creatorcontrib><creatorcontrib>TERASAKA, Naoki</creatorcontrib><creatorcontrib>INABA, Toshimori</creatorcontrib><creatorcontrib>FUNAHASHI, Tohru</creatorcontrib><creatorcontrib>MATSUZAWA, Yuji</creatorcontrib><creatorcontrib>OUCHI, Noriyuki</creatorcontrib><creatorcontrib>NISHIDA, Makoto</creatorcontrib><creatorcontrib>ARITA, Yukio</creatorcontrib><creatorcontrib>KUMADA, Masahiro</creatorcontrib><creatorcontrib>OHASHI, Koji</creatorcontrib><creatorcontrib>SAKAI, Naohiko</creatorcontrib><creatorcontrib>SHIMOMURA, Iichiro</creatorcontrib><creatorcontrib>KOBAYASHI, Hideki</creatorcontrib><title>Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice</title><title>Circulation (New York, N.Y.)</title><addtitle>Circulation</addtitle><description>Dysregulation of adipocyte-derived bioactive molecules plays an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the injured artery from the plasma and suppressed endothelial inflammatory response and vascular smooth muscle cell proliferation, as well as macrophage-to-foam cell transformation in vitro. The current study investigated whether the increased plasma adiponectin could actually reduce atherosclerosis in vivo. Apolipoprotein E-deficient mice were treated with recombinant adenovirus expressing human adiponectin (Ad-APN) or beta-galactosidase (Ad-betagal). The plasma adiponectin levels in Ad-APN-treated mice increased 48 times as much as those in Ad-betagal treated mice. On the 14th day after injection, the lesion formation in aortic sinus was inhibited in Ad-APN-treated mice by 30% compared with Ad-betagal-treated mice (P&lt;0.05). In the lesions of Ad-APN-treated mice, the lipid droplets became smaller compared with Ad-betagal-treated mice (P&lt;0.01). Immunohistochemical analyses demonstrated that the adenovirus-mediated adiponectin migrate to foam cells in the fatty streak lesions. The real-time quantitative polymerase chain reaction revealed that Ad-APN treatment significantly suppressed the mRNA levels of vascular cell adhesion molecule-1 by 29% and class A scavenger receptor by 34%, and tended to reduce levels of tumor necrosis factor-alpha without affecting those of CD36 in the aortic tissue. These findings documented for the first time that elevated plasma adiponectin suppresses the development of atherosclerosis in vivo.</description><subject>Adiponectin</subject><subject>Animals</subject><subject>Apolipoproteins E - blood</subject><subject>Apolipoproteins E - deficiency</subject><subject>Apolipoproteins E - genetics</subject><subject>Arteriosclerosis - genetics</subject><subject>Arteriosclerosis - pathology</subject><subject>Arteriosclerosis - prevention &amp; control</subject><subject>Atherosclerosis (general aspects, experimental research)</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Cardiology. Vascular system</subject><subject>CD36 Antigens - genetics</subject><subject>CD36 Antigens - metabolism</subject><subject>Disease Models, Animal</subject><subject>Disease Progression</subject><subject>Foam Cells - metabolism</subject><subject>Foam Cells - pathology</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors - administration &amp; dosage</subject><subject>Genetic Vectors - genetics</subject><subject>Immunohistochemistry</subject><subject>Intercellular Signaling Peptides and Proteins</subject><subject>Macrophages - pathology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Membrane Proteins</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Muscle, Smooth, Vascular - pathology</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Proteins - pharmacology</subject><subject>Receptors, Immunologic - genetics</subject><subject>Receptors, Immunologic - metabolism</subject><subject>Receptors, Lipoprotein</subject><subject>Receptors, Scavenger</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - analysis</subject><subject>RNA, Messenger - metabolism</subject><subject>Scavenger Receptors, Class A</subject><subject>Scavenger Receptors, Class B</subject><subject>Sinus of Valsalva - drug effects</subject><subject>Sinus of Valsalva - pathology</subject><subject>Tumor Necrosis Factor-alpha - genetics</subject><subject>Tumor Necrosis Factor-alpha - metabolism</subject><subject>Vascular Cell Adhesion Molecule-1 - genetics</subject><subject>Vascular Cell Adhesion Molecule-1 - metabolism</subject><issn>0009-7322</issn><issn>1524-4539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkd9LHDEQx0Ox6NX6L8gh6NtuM_m58U0ObQWhUNrnkE0mNLK3eya7D_735vTgwDxM-DKfmUy-Q8gV0BZAwQ8KrU-5pfsjmKa6lZRy1oL5QlYgmWiE5OaErGreNJozdka-lfJcpeJanpIzYEJClSvycBfSbhrRz2lcZwyLx7J283_MU_HDPqayrim3m4YK7vI0Y5X3TcCYfMJxXm-Tx-_ka3RDwYvDfU7-Pdz_3fxqnn7_fNzcPTVe8m5uXIiBR6N64CEaZ4TomPMCkWstAaPqeqWdjMLRINF0pleuBxUoaN_3QvFzcvPRtw7ysmCZ7TYVj8PgRpyWYnW1w0gFFbz6BD5PSx7rbJYB09wo3lXo9gPy9Z8lY7S7nLYuv1qgdm-1pWA3j3_s0Wr7brUFU4svDy8s_RbDsfTgbQWuD4Ar3g0xu9GncuSEYaDqpt4AF62Hrw</recordid><startdate>20021126</startdate><enddate>20021126</enddate><creator>OKAMOTO, Yoshihisa</creator><creator>KIHARA, Shinji</creator><creator>TERASAKA, Naoki</creator><creator>INABA, Toshimori</creator><creator>FUNAHASHI, Tohru</creator><creator>MATSUZAWA, Yuji</creator><creator>OUCHI, Noriyuki</creator><creator>NISHIDA, Makoto</creator><creator>ARITA, Yukio</creator><creator>KUMADA, Masahiro</creator><creator>OHASHI, Koji</creator><creator>SAKAI, Naohiko</creator><creator>SHIMOMURA, Iichiro</creator><creator>KOBAYASHI, Hideki</creator><general>Lippincott Williams &amp; Wilkins</general><general>American Heart Association, Inc</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>U9A</scope><scope>7X8</scope></search><sort><creationdate>20021126</creationdate><title>Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice</title><author>OKAMOTO, Yoshihisa ; KIHARA, Shinji ; TERASAKA, Naoki ; INABA, Toshimori ; FUNAHASHI, Tohru ; MATSUZAWA, Yuji ; OUCHI, Noriyuki ; NISHIDA, Makoto ; ARITA, Yukio ; KUMADA, Masahiro ; OHASHI, Koji ; SAKAI, Naohiko ; SHIMOMURA, Iichiro ; KOBAYASHI, Hideki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c538t-adfd3f96b13df9a94482ac4ee37751ef68b67a5f4a0d5e989b6ab16d017cbb463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Adiponectin</topic><topic>Animals</topic><topic>Apolipoproteins E - blood</topic><topic>Apolipoproteins E - deficiency</topic><topic>Apolipoproteins E - genetics</topic><topic>Arteriosclerosis - genetics</topic><topic>Arteriosclerosis - pathology</topic><topic>Arteriosclerosis - prevention &amp; control</topic><topic>Atherosclerosis (general aspects, experimental research)</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Cardiology. Vascular system</topic><topic>CD36 Antigens - genetics</topic><topic>CD36 Antigens - metabolism</topic><topic>Disease Models, Animal</topic><topic>Disease Progression</topic><topic>Foam Cells - metabolism</topic><topic>Foam Cells - pathology</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors - administration &amp; dosage</topic><topic>Genetic Vectors - genetics</topic><topic>Immunohistochemistry</topic><topic>Intercellular Signaling Peptides and Proteins</topic><topic>Macrophages - pathology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Membrane Proteins</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Muscle, Smooth, Vascular - pathology</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Proteins - pharmacology</topic><topic>Receptors, Immunologic - genetics</topic><topic>Receptors, Immunologic - metabolism</topic><topic>Receptors, Lipoprotein</topic><topic>Receptors, Scavenger</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - analysis</topic><topic>RNA, Messenger - metabolism</topic><topic>Scavenger Receptors, Class A</topic><topic>Scavenger Receptors, Class B</topic><topic>Sinus of Valsalva - drug effects</topic><topic>Sinus of Valsalva - pathology</topic><topic>Tumor Necrosis Factor-alpha - genetics</topic><topic>Tumor Necrosis Factor-alpha - metabolism</topic><topic>Vascular Cell Adhesion Molecule-1 - genetics</topic><topic>Vascular Cell Adhesion Molecule-1 - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OKAMOTO, Yoshihisa</creatorcontrib><creatorcontrib>KIHARA, Shinji</creatorcontrib><creatorcontrib>TERASAKA, Naoki</creatorcontrib><creatorcontrib>INABA, Toshimori</creatorcontrib><creatorcontrib>FUNAHASHI, Tohru</creatorcontrib><creatorcontrib>MATSUZAWA, Yuji</creatorcontrib><creatorcontrib>OUCHI, Noriyuki</creatorcontrib><creatorcontrib>NISHIDA, Makoto</creatorcontrib><creatorcontrib>ARITA, Yukio</creatorcontrib><creatorcontrib>KUMADA, Masahiro</creatorcontrib><creatorcontrib>OHASHI, Koji</creatorcontrib><creatorcontrib>SAKAI, Naohiko</creatorcontrib><creatorcontrib>SHIMOMURA, Iichiro</creatorcontrib><creatorcontrib>KOBAYASHI, Hideki</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Circulation (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OKAMOTO, Yoshihisa</au><au>KIHARA, Shinji</au><au>TERASAKA, Naoki</au><au>INABA, Toshimori</au><au>FUNAHASHI, Tohru</au><au>MATSUZAWA, Yuji</au><au>OUCHI, Noriyuki</au><au>NISHIDA, Makoto</au><au>ARITA, Yukio</au><au>KUMADA, Masahiro</au><au>OHASHI, Koji</au><au>SAKAI, Naohiko</au><au>SHIMOMURA, Iichiro</au><au>KOBAYASHI, Hideki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice</atitle><jtitle>Circulation (New York, N.Y.)</jtitle><addtitle>Circulation</addtitle><date>2002-11-26</date><risdate>2002</risdate><volume>106</volume><issue>22</issue><spage>2767</spage><epage>2770</epage><pages>2767-2770</pages><issn>0009-7322</issn><eissn>1524-4539</eissn><coden>CIRCAZ</coden><abstract>Dysregulation of adipocyte-derived bioactive molecules plays an important role in the development of atherosclerosis. We previously reported that adiponectin, an adipocyte-specific plasma protein, accumulated in the injured artery from the plasma and suppressed endothelial inflammatory response and vascular smooth muscle cell proliferation, as well as macrophage-to-foam cell transformation in vitro. The current study investigated whether the increased plasma adiponectin could actually reduce atherosclerosis in vivo. Apolipoprotein E-deficient mice were treated with recombinant adenovirus expressing human adiponectin (Ad-APN) or beta-galactosidase (Ad-betagal). The plasma adiponectin levels in Ad-APN-treated mice increased 48 times as much as those in Ad-betagal treated mice. On the 14th day after injection, the lesion formation in aortic sinus was inhibited in Ad-APN-treated mice by 30% compared with Ad-betagal-treated mice (P&lt;0.05). In the lesions of Ad-APN-treated mice, the lipid droplets became smaller compared with Ad-betagal-treated mice (P&lt;0.01). Immunohistochemical analyses demonstrated that the adenovirus-mediated adiponectin migrate to foam cells in the fatty streak lesions. The real-time quantitative polymerase chain reaction revealed that Ad-APN treatment significantly suppressed the mRNA levels of vascular cell adhesion molecule-1 by 29% and class A scavenger receptor by 34%, and tended to reduce levels of tumor necrosis factor-alpha without affecting those of CD36 in the aortic tissue. These findings documented for the first time that elevated plasma adiponectin suppresses the development of atherosclerosis in vivo.</abstract><cop>Hagerstown, MD</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>12451000</pmid><doi>10.1161/01.cir.0000042707.50032.19</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0009-7322
ispartof Circulation (New York, N.Y.), 2002-11, Vol.106 (22), p.2767-2770
issn 0009-7322
1524-4539
language eng
recordid cdi_proquest_miscellaneous_72709561
source MEDLINE; American Heart Association Journals; Journals@Ovid Complete; EZB-FREE-00999 freely available EZB journals
subjects Adiponectin
Animals
Apolipoproteins E - blood
Apolipoproteins E - deficiency
Apolipoproteins E - genetics
Arteriosclerosis - genetics
Arteriosclerosis - pathology
Arteriosclerosis - prevention & control
Atherosclerosis (general aspects, experimental research)
Biological and medical sciences
Blood and lymphatic vessels
Cardiology. Vascular system
CD36 Antigens - genetics
CD36 Antigens - metabolism
Disease Models, Animal
Disease Progression
Foam Cells - metabolism
Foam Cells - pathology
Genetic Therapy
Genetic Vectors - administration & dosage
Genetic Vectors - genetics
Immunohistochemistry
Intercellular Signaling Peptides and Proteins
Macrophages - pathology
Male
Medical sciences
Membrane Proteins
Mice
Mice, Knockout
Muscle, Smooth, Vascular - pathology
Proteins - genetics
Proteins - metabolism
Proteins - pharmacology
Receptors, Immunologic - genetics
Receptors, Immunologic - metabolism
Receptors, Lipoprotein
Receptors, Scavenger
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - analysis
RNA, Messenger - metabolism
Scavenger Receptors, Class A
Scavenger Receptors, Class B
Sinus of Valsalva - drug effects
Sinus of Valsalva - pathology
Tumor Necrosis Factor-alpha - genetics
Tumor Necrosis Factor-alpha - metabolism
Vascular Cell Adhesion Molecule-1 - genetics
Vascular Cell Adhesion Molecule-1 - metabolism
title Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adiponectin%20reduces%20atherosclerosis%20in%20apolipoprotein%20E-deficient%20mice&rft.jtitle=Circulation%20(New%20York,%20N.Y.)&rft.au=OKAMOTO,%20Yoshihisa&rft.date=2002-11-26&rft.volume=106&rft.issue=22&rft.spage=2767&rft.epage=2770&rft.pages=2767-2770&rft.issn=0009-7322&rft.eissn=1524-4539&rft.coden=CIRCAZ&rft_id=info:doi/10.1161/01.cir.0000042707.50032.19&rft_dat=%3Cproquest_cross%3E264464811%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212739638&rft_id=info:pmid/12451000&rfr_iscdi=true