Power and validity of methods to identify variability genes
A variability gene model [Magnus et al., Clin Genet 19:67–70, 1981] hypothesizes that environmental influences on the expression of additive genes for a quantitative trait such as cholesterol are under the control of alleles at a separate nonadditive locus. They suggest identifying such genes using...
Gespeichert in:
Veröffentlicht in: | Genetic epidemiology 1991, Vol.8 (6), p.381-388 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 6 |
container_start_page | 381 |
container_title | Genetic epidemiology |
container_volume | 8 |
creator | Elashoff, Janet D. Cantor, Rita M. Shain, Sara Vogler, G. P. |
description | A variability gene model [Magnus et al., Clin Genet 19:67–70, 1981] hypothesizes that environmental influences on the expression of additive genes for a quantitative trait such as cholesterol are under the control of alleles at a separate nonadditive locus. They suggest identifying such genes using an analysis of variance to compare absolute intrapair monozygotic twin trait differences between the genotypes of the postulated variability locus. However, quantitative traits such as cholesterol often have skewed distributions with a long right tail; what are the effects of such nonnormality on the procedure suggested by Magnus et al. [1981]? We show that their method is a special case of the Levene tests, robust tests for variability differences. We introduce a statistical model representing sources of variability in twin pair differences and demonstrate with simulation studies that although the Levene tests have robust Type I error, power is enhanced when nonnormal data are transformed before analysis, and the apparent presence and degree of variability differences are dependent on the scale of analysis. These findings indicate the importance of appropriate transformation of the trait before analysis. Analysis of a well‐characterized twin data set illustrates these conclusions. |
doi_str_mv | 10.1002/gepi.1370080604 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72690858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72690858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4754-8360f9b3ba9bc590dcb26f1e340f4461f7c96ebbab5a3092ee7ea94275bf6aab3</originalsourceid><addsrcrecordid>eNqF0c9PFDEUB_CGaHBBz55M5mAMl4HX39NwUgIrhiAHjQmXpp15xerszNrOAvvfM5vZQLzAqYfv5_va9BHynsIhBWBHN7iMh5RrgAoUiB0yo2CqkjHNXpEZaEFL4Ea-IXs5_wGgVBi5S3bpqAXoGTm-6u8wFa5rilvXxiYO66IPxQKH332Ti6EvYoPdEMN6zFN0PrYbcoMd5rfkdXBtxnfbc5_8PDv9cfK1vPg-Pz_5fFHWQktRVlxBMJ57Z3wtDTS1ZypQ5AKCEIoGXRuF3jsvHQfDEDU6I5iWPijnPN8nn6a5y9T_W2Ee7CLmGtvWddivstVMGahk9SKkqtKGCTnCg-ehFMBYpbUa6dFE69TnnDDYZYoLl9aWgt2swG5WYJ9WMDY-bIev_AKbJz_9-Zh_3OYu164NyXV1zI9MMqMNmJEdT-wutrh-6VY7P706_-8R5dSOecD7x7ZLf63SXEv763JujdDXc_FN2i_8AcbPrkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1540228776</pqid></control><display><type>article</type><title>Power and validity of methods to identify variability genes</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Elashoff, Janet D. ; Cantor, Rita M. ; Shain, Sara ; Vogler, G. P.</creator><creatorcontrib>Elashoff, Janet D. ; Cantor, Rita M. ; Shain, Sara ; Vogler, G. P.</creatorcontrib><description>A variability gene model [Magnus et al., Clin Genet 19:67–70, 1981] hypothesizes that environmental influences on the expression of additive genes for a quantitative trait such as cholesterol are under the control of alleles at a separate nonadditive locus. They suggest identifying such genes using an analysis of variance to compare absolute intrapair monozygotic twin trait differences between the genotypes of the postulated variability locus. However, quantitative traits such as cholesterol often have skewed distributions with a long right tail; what are the effects of such nonnormality on the procedure suggested by Magnus et al. [1981]? We show that their method is a special case of the Levene tests, robust tests for variability differences. We introduce a statistical model representing sources of variability in twin pair differences and demonstrate with simulation studies that although the Levene tests have robust Type I error, power is enhanced when nonnormal data are transformed before analysis, and the apparent presence and degree of variability differences are dependent on the scale of analysis. These findings indicate the importance of appropriate transformation of the trait before analysis. Analysis of a well‐characterized twin data set illustrates these conclusions.</description><identifier>ISSN: 0741-0395</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.1370080604</identifier><identifier>PMID: 1806407</identifier><identifier>CODEN: GENYEX</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Aged ; Analysis of Variance ; Biological and medical sciences ; Cholesterol - genetics ; Classical genetics, quantitative genetics, hybrids ; Fundamental and applied biological sciences. Psychology ; Genetic Variation - genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Genotype ; genotype by environment interaction ; Humans ; Lipoproteins - genetics ; Male ; Methods, theories and miscellaneous ; robust test ; Triglycerides - genetics ; twins ; Twins, Dizygotic - genetics ; Twins, Monozygotic - genetics ; variability gene</subject><ispartof>Genetic epidemiology, 1991, Vol.8 (6), p.381-388</ispartof><rights>Copyright © 1991 Wiley‐Liss, Inc., A Wiley Company</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4754-8360f9b3ba9bc590dcb26f1e340f4461f7c96ebbab5a3092ee7ea94275bf6aab3</citedby><cites>FETCH-LOGICAL-c4754-8360f9b3ba9bc590dcb26f1e340f4461f7c96ebbab5a3092ee7ea94275bf6aab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgepi.1370080604$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgepi.1370080604$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4024,27923,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5297909$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1806407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elashoff, Janet D.</creatorcontrib><creatorcontrib>Cantor, Rita M.</creatorcontrib><creatorcontrib>Shain, Sara</creatorcontrib><creatorcontrib>Vogler, G. P.</creatorcontrib><title>Power and validity of methods to identify variability genes</title><title>Genetic epidemiology</title><addtitle>Genet. Epidemiol</addtitle><description>A variability gene model [Magnus et al., Clin Genet 19:67–70, 1981] hypothesizes that environmental influences on the expression of additive genes for a quantitative trait such as cholesterol are under the control of alleles at a separate nonadditive locus. They suggest identifying such genes using an analysis of variance to compare absolute intrapair monozygotic twin trait differences between the genotypes of the postulated variability locus. However, quantitative traits such as cholesterol often have skewed distributions with a long right tail; what are the effects of such nonnormality on the procedure suggested by Magnus et al. [1981]? We show that their method is a special case of the Levene tests, robust tests for variability differences. We introduce a statistical model representing sources of variability in twin pair differences and demonstrate with simulation studies that although the Levene tests have robust Type I error, power is enhanced when nonnormal data are transformed before analysis, and the apparent presence and degree of variability differences are dependent on the scale of analysis. These findings indicate the importance of appropriate transformation of the trait before analysis. Analysis of a well‐characterized twin data set illustrates these conclusions.</description><subject>Aged</subject><subject>Analysis of Variance</subject><subject>Biological and medical sciences</subject><subject>Cholesterol - genetics</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Variation - genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genotype</subject><subject>genotype by environment interaction</subject><subject>Humans</subject><subject>Lipoproteins - genetics</subject><subject>Male</subject><subject>Methods, theories and miscellaneous</subject><subject>robust test</subject><subject>Triglycerides - genetics</subject><subject>twins</subject><subject>Twins, Dizygotic - genetics</subject><subject>Twins, Monozygotic - genetics</subject><subject>variability gene</subject><issn>0741-0395</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9PFDEUB_CGaHBBz55M5mAMl4HX39NwUgIrhiAHjQmXpp15xerszNrOAvvfM5vZQLzAqYfv5_va9BHynsIhBWBHN7iMh5RrgAoUiB0yo2CqkjHNXpEZaEFL4Ea-IXs5_wGgVBi5S3bpqAXoGTm-6u8wFa5rilvXxiYO66IPxQKH332Ti6EvYoPdEMN6zFN0PrYbcoMd5rfkdXBtxnfbc5_8PDv9cfK1vPg-Pz_5fFHWQktRVlxBMJ57Z3wtDTS1ZypQ5AKCEIoGXRuF3jsvHQfDEDU6I5iWPijnPN8nn6a5y9T_W2Ee7CLmGtvWddivstVMGahk9SKkqtKGCTnCg-ehFMBYpbUa6dFE69TnnDDYZYoLl9aWgt2swG5WYJ9WMDY-bIev_AKbJz_9-Zh_3OYu164NyXV1zI9MMqMNmJEdT-wutrh-6VY7P706_-8R5dSOecD7x7ZLf63SXEv763JujdDXc_FN2i_8AcbPrkE</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Elashoff, Janet D.</creator><creator>Cantor, Rita M.</creator><creator>Shain, Sara</creator><creator>Vogler, G. P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>1991</creationdate><title>Power and validity of methods to identify variability genes</title><author>Elashoff, Janet D. ; Cantor, Rita M. ; Shain, Sara ; Vogler, G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4754-8360f9b3ba9bc590dcb26f1e340f4461f7c96ebbab5a3092ee7ea94275bf6aab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Aged</topic><topic>Analysis of Variance</topic><topic>Biological and medical sciences</topic><topic>Cholesterol - genetics</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Variation - genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genotype</topic><topic>genotype by environment interaction</topic><topic>Humans</topic><topic>Lipoproteins - genetics</topic><topic>Male</topic><topic>Methods, theories and miscellaneous</topic><topic>robust test</topic><topic>Triglycerides - genetics</topic><topic>twins</topic><topic>Twins, Dizygotic - genetics</topic><topic>Twins, Monozygotic - genetics</topic><topic>variability gene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elashoff, Janet D.</creatorcontrib><creatorcontrib>Cantor, Rita M.</creatorcontrib><creatorcontrib>Shain, Sara</creatorcontrib><creatorcontrib>Vogler, G. P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elashoff, Janet D.</au><au>Cantor, Rita M.</au><au>Shain, Sara</au><au>Vogler, G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power and validity of methods to identify variability genes</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet. Epidemiol</addtitle><date>1991</date><risdate>1991</risdate><volume>8</volume><issue>6</issue><spage>381</spage><epage>388</epage><pages>381-388</pages><issn>0741-0395</issn><eissn>1098-2272</eissn><coden>GENYEX</coden><abstract>A variability gene model [Magnus et al., Clin Genet 19:67–70, 1981] hypothesizes that environmental influences on the expression of additive genes for a quantitative trait such as cholesterol are under the control of alleles at a separate nonadditive locus. They suggest identifying such genes using an analysis of variance to compare absolute intrapair monozygotic twin trait differences between the genotypes of the postulated variability locus. However, quantitative traits such as cholesterol often have skewed distributions with a long right tail; what are the effects of such nonnormality on the procedure suggested by Magnus et al. [1981]? We show that their method is a special case of the Levene tests, robust tests for variability differences. We introduce a statistical model representing sources of variability in twin pair differences and demonstrate with simulation studies that although the Levene tests have robust Type I error, power is enhanced when nonnormal data are transformed before analysis, and the apparent presence and degree of variability differences are dependent on the scale of analysis. These findings indicate the importance of appropriate transformation of the trait before analysis. Analysis of a well‐characterized twin data set illustrates these conclusions.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>1806407</pmid><doi>10.1002/gepi.1370080604</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-0395 |
ispartof | Genetic epidemiology, 1991, Vol.8 (6), p.381-388 |
issn | 0741-0395 1098-2272 |
language | eng |
recordid | cdi_proquest_miscellaneous_72690858 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Aged Analysis of Variance Biological and medical sciences Cholesterol - genetics Classical genetics, quantitative genetics, hybrids Fundamental and applied biological sciences. Psychology Genetic Variation - genetics Genetics of eukaryotes. Biological and molecular evolution Genotype genotype by environment interaction Humans Lipoproteins - genetics Male Methods, theories and miscellaneous robust test Triglycerides - genetics twins Twins, Dizygotic - genetics Twins, Monozygotic - genetics variability gene |
title | Power and validity of methods to identify variability genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20and%20validity%20of%20methods%20to%20identify%20variability%20genes&rft.jtitle=Genetic%20epidemiology&rft.au=Elashoff,%20Janet%20D.&rft.date=1991&rft.volume=8&rft.issue=6&rft.spage=381&rft.epage=388&rft.pages=381-388&rft.issn=0741-0395&rft.eissn=1098-2272&rft.coden=GENYEX&rft_id=info:doi/10.1002/gepi.1370080604&rft_dat=%3Cproquest_cross%3E72690858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1540228776&rft_id=info:pmid/1806407&rfr_iscdi=true |