Power and validity of methods to identify variability genes

A variability gene model [Magnus et al., Clin Genet 19:67–70, 1981] hypothesizes that environmental influences on the expression of additive genes for a quantitative trait such as cholesterol are under the control of alleles at a separate nonadditive locus. They suggest identifying such genes using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetic epidemiology 1991, Vol.8 (6), p.381-388
Hauptverfasser: Elashoff, Janet D., Cantor, Rita M., Shain, Sara, Vogler, G. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue 6
container_start_page 381
container_title Genetic epidemiology
container_volume 8
creator Elashoff, Janet D.
Cantor, Rita M.
Shain, Sara
Vogler, G. P.
description A variability gene model [Magnus et al., Clin Genet 19:67–70, 1981] hypothesizes that environmental influences on the expression of additive genes for a quantitative trait such as cholesterol are under the control of alleles at a separate nonadditive locus. They suggest identifying such genes using an analysis of variance to compare absolute intrapair monozygotic twin trait differences between the genotypes of the postulated variability locus. However, quantitative traits such as cholesterol often have skewed distributions with a long right tail; what are the effects of such nonnormality on the procedure suggested by Magnus et al. [1981]? We show that their method is a special case of the Levene tests, robust tests for variability differences. We introduce a statistical model representing sources of variability in twin pair differences and demonstrate with simulation studies that although the Levene tests have robust Type I error, power is enhanced when nonnormal data are transformed before analysis, and the apparent presence and degree of variability differences are dependent on the scale of analysis. These findings indicate the importance of appropriate transformation of the trait before analysis. Analysis of a well‐characterized twin data set illustrates these conclusions.
doi_str_mv 10.1002/gepi.1370080604
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72690858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72690858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4754-8360f9b3ba9bc590dcb26f1e340f4461f7c96ebbab5a3092ee7ea94275bf6aab3</originalsourceid><addsrcrecordid>eNqF0c9PFDEUB_CGaHBBz55M5mAMl4HX39NwUgIrhiAHjQmXpp15xerszNrOAvvfM5vZQLzAqYfv5_va9BHynsIhBWBHN7iMh5RrgAoUiB0yo2CqkjHNXpEZaEFL4Ea-IXs5_wGgVBi5S3bpqAXoGTm-6u8wFa5rilvXxiYO66IPxQKH332Ti6EvYoPdEMN6zFN0PrYbcoMd5rfkdXBtxnfbc5_8PDv9cfK1vPg-Pz_5fFHWQktRVlxBMJ57Z3wtDTS1ZypQ5AKCEIoGXRuF3jsvHQfDEDU6I5iWPijnPN8nn6a5y9T_W2Ee7CLmGtvWddivstVMGahk9SKkqtKGCTnCg-ehFMBYpbUa6dFE69TnnDDYZYoLl9aWgt2swG5WYJ9WMDY-bIev_AKbJz_9-Zh_3OYu164NyXV1zI9MMqMNmJEdT-wutrh-6VY7P706_-8R5dSOecD7x7ZLf63SXEv763JujdDXc_FN2i_8AcbPrkE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1540228776</pqid></control><display><type>article</type><title>Power and validity of methods to identify variability genes</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Elashoff, Janet D. ; Cantor, Rita M. ; Shain, Sara ; Vogler, G. P.</creator><creatorcontrib>Elashoff, Janet D. ; Cantor, Rita M. ; Shain, Sara ; Vogler, G. P.</creatorcontrib><description>A variability gene model [Magnus et al., Clin Genet 19:67–70, 1981] hypothesizes that environmental influences on the expression of additive genes for a quantitative trait such as cholesterol are under the control of alleles at a separate nonadditive locus. They suggest identifying such genes using an analysis of variance to compare absolute intrapair monozygotic twin trait differences between the genotypes of the postulated variability locus. However, quantitative traits such as cholesterol often have skewed distributions with a long right tail; what are the effects of such nonnormality on the procedure suggested by Magnus et al. [1981]? We show that their method is a special case of the Levene tests, robust tests for variability differences. We introduce a statistical model representing sources of variability in twin pair differences and demonstrate with simulation studies that although the Levene tests have robust Type I error, power is enhanced when nonnormal data are transformed before analysis, and the apparent presence and degree of variability differences are dependent on the scale of analysis. These findings indicate the importance of appropriate transformation of the trait before analysis. Analysis of a well‐characterized twin data set illustrates these conclusions.</description><identifier>ISSN: 0741-0395</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.1370080604</identifier><identifier>PMID: 1806407</identifier><identifier>CODEN: GENYEX</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Aged ; Analysis of Variance ; Biological and medical sciences ; Cholesterol - genetics ; Classical genetics, quantitative genetics, hybrids ; Fundamental and applied biological sciences. Psychology ; Genetic Variation - genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Genotype ; genotype by environment interaction ; Humans ; Lipoproteins - genetics ; Male ; Methods, theories and miscellaneous ; robust test ; Triglycerides - genetics ; twins ; Twins, Dizygotic - genetics ; Twins, Monozygotic - genetics ; variability gene</subject><ispartof>Genetic epidemiology, 1991, Vol.8 (6), p.381-388</ispartof><rights>Copyright © 1991 Wiley‐Liss, Inc., A Wiley Company</rights><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4754-8360f9b3ba9bc590dcb26f1e340f4461f7c96ebbab5a3092ee7ea94275bf6aab3</citedby><cites>FETCH-LOGICAL-c4754-8360f9b3ba9bc590dcb26f1e340f4461f7c96ebbab5a3092ee7ea94275bf6aab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fgepi.1370080604$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fgepi.1370080604$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4024,27923,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5297909$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1806407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elashoff, Janet D.</creatorcontrib><creatorcontrib>Cantor, Rita M.</creatorcontrib><creatorcontrib>Shain, Sara</creatorcontrib><creatorcontrib>Vogler, G. P.</creatorcontrib><title>Power and validity of methods to identify variability genes</title><title>Genetic epidemiology</title><addtitle>Genet. Epidemiol</addtitle><description>A variability gene model [Magnus et al., Clin Genet 19:67–70, 1981] hypothesizes that environmental influences on the expression of additive genes for a quantitative trait such as cholesterol are under the control of alleles at a separate nonadditive locus. They suggest identifying such genes using an analysis of variance to compare absolute intrapair monozygotic twin trait differences between the genotypes of the postulated variability locus. However, quantitative traits such as cholesterol often have skewed distributions with a long right tail; what are the effects of such nonnormality on the procedure suggested by Magnus et al. [1981]? We show that their method is a special case of the Levene tests, robust tests for variability differences. We introduce a statistical model representing sources of variability in twin pair differences and demonstrate with simulation studies that although the Levene tests have robust Type I error, power is enhanced when nonnormal data are transformed before analysis, and the apparent presence and degree of variability differences are dependent on the scale of analysis. These findings indicate the importance of appropriate transformation of the trait before analysis. Analysis of a well‐characterized twin data set illustrates these conclusions.</description><subject>Aged</subject><subject>Analysis of Variance</subject><subject>Biological and medical sciences</subject><subject>Cholesterol - genetics</subject><subject>Classical genetics, quantitative genetics, hybrids</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic Variation - genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genotype</subject><subject>genotype by environment interaction</subject><subject>Humans</subject><subject>Lipoproteins - genetics</subject><subject>Male</subject><subject>Methods, theories and miscellaneous</subject><subject>robust test</subject><subject>Triglycerides - genetics</subject><subject>twins</subject><subject>Twins, Dizygotic - genetics</subject><subject>Twins, Monozygotic - genetics</subject><subject>variability gene</subject><issn>0741-0395</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9PFDEUB_CGaHBBz55M5mAMl4HX39NwUgIrhiAHjQmXpp15xerszNrOAvvfM5vZQLzAqYfv5_va9BHynsIhBWBHN7iMh5RrgAoUiB0yo2CqkjHNXpEZaEFL4Ea-IXs5_wGgVBi5S3bpqAXoGTm-6u8wFa5rilvXxiYO66IPxQKH332Ti6EvYoPdEMN6zFN0PrYbcoMd5rfkdXBtxnfbc5_8PDv9cfK1vPg-Pz_5fFHWQktRVlxBMJ57Z3wtDTS1ZypQ5AKCEIoGXRuF3jsvHQfDEDU6I5iWPijnPN8nn6a5y9T_W2Ee7CLmGtvWddivstVMGahk9SKkqtKGCTnCg-ehFMBYpbUa6dFE69TnnDDYZYoLl9aWgt2swG5WYJ9WMDY-bIev_AKbJz_9-Zh_3OYu164NyXV1zI9MMqMNmJEdT-wutrh-6VY7P706_-8R5dSOecD7x7ZLf63SXEv763JujdDXc_FN2i_8AcbPrkE</recordid><startdate>1991</startdate><enddate>1991</enddate><creator>Elashoff, Janet D.</creator><creator>Cantor, Rita M.</creator><creator>Shain, Sara</creator><creator>Vogler, G. P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>1991</creationdate><title>Power and validity of methods to identify variability genes</title><author>Elashoff, Janet D. ; Cantor, Rita M. ; Shain, Sara ; Vogler, G. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4754-8360f9b3ba9bc590dcb26f1e340f4461f7c96ebbab5a3092ee7ea94275bf6aab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Aged</topic><topic>Analysis of Variance</topic><topic>Biological and medical sciences</topic><topic>Cholesterol - genetics</topic><topic>Classical genetics, quantitative genetics, hybrids</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic Variation - genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genotype</topic><topic>genotype by environment interaction</topic><topic>Humans</topic><topic>Lipoproteins - genetics</topic><topic>Male</topic><topic>Methods, theories and miscellaneous</topic><topic>robust test</topic><topic>Triglycerides - genetics</topic><topic>twins</topic><topic>Twins, Dizygotic - genetics</topic><topic>Twins, Monozygotic - genetics</topic><topic>variability gene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elashoff, Janet D.</creatorcontrib><creatorcontrib>Cantor, Rita M.</creatorcontrib><creatorcontrib>Shain, Sara</creatorcontrib><creatorcontrib>Vogler, G. P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elashoff, Janet D.</au><au>Cantor, Rita M.</au><au>Shain, Sara</au><au>Vogler, G. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Power and validity of methods to identify variability genes</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet. Epidemiol</addtitle><date>1991</date><risdate>1991</risdate><volume>8</volume><issue>6</issue><spage>381</spage><epage>388</epage><pages>381-388</pages><issn>0741-0395</issn><eissn>1098-2272</eissn><coden>GENYEX</coden><abstract>A variability gene model [Magnus et al., Clin Genet 19:67–70, 1981] hypothesizes that environmental influences on the expression of additive genes for a quantitative trait such as cholesterol are under the control of alleles at a separate nonadditive locus. They suggest identifying such genes using an analysis of variance to compare absolute intrapair monozygotic twin trait differences between the genotypes of the postulated variability locus. However, quantitative traits such as cholesterol often have skewed distributions with a long right tail; what are the effects of such nonnormality on the procedure suggested by Magnus et al. [1981]? We show that their method is a special case of the Levene tests, robust tests for variability differences. We introduce a statistical model representing sources of variability in twin pair differences and demonstrate with simulation studies that although the Levene tests have robust Type I error, power is enhanced when nonnormal data are transformed before analysis, and the apparent presence and degree of variability differences are dependent on the scale of analysis. These findings indicate the importance of appropriate transformation of the trait before analysis. Analysis of a well‐characterized twin data set illustrates these conclusions.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>1806407</pmid><doi>10.1002/gepi.1370080604</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0741-0395
ispartof Genetic epidemiology, 1991, Vol.8 (6), p.381-388
issn 0741-0395
1098-2272
language eng
recordid cdi_proquest_miscellaneous_72690858
source MEDLINE; Access via Wiley Online Library
subjects Aged
Analysis of Variance
Biological and medical sciences
Cholesterol - genetics
Classical genetics, quantitative genetics, hybrids
Fundamental and applied biological sciences. Psychology
Genetic Variation - genetics
Genetics of eukaryotes. Biological and molecular evolution
Genotype
genotype by environment interaction
Humans
Lipoproteins - genetics
Male
Methods, theories and miscellaneous
robust test
Triglycerides - genetics
twins
Twins, Dizygotic - genetics
Twins, Monozygotic - genetics
variability gene
title Power and validity of methods to identify variability genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T21%3A21%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Power%20and%20validity%20of%20methods%20to%20identify%20variability%20genes&rft.jtitle=Genetic%20epidemiology&rft.au=Elashoff,%20Janet%20D.&rft.date=1991&rft.volume=8&rft.issue=6&rft.spage=381&rft.epage=388&rft.pages=381-388&rft.issn=0741-0395&rft.eissn=1098-2272&rft.coden=GENYEX&rft_id=info:doi/10.1002/gepi.1370080604&rft_dat=%3Cproquest_cross%3E72690858%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1540228776&rft_id=info:pmid/1806407&rfr_iscdi=true