Non-Linear Transform-Based Robust Adaptive Latency Change Estimation of Evoked Potentials

Objectives: To improve the latency change estimation of evoked potentials (EP) under the lower order α-stable noise conditions by proposing and analyzing a new adaptive EP latency change detection algorithm (referred to as the NLST). Methods: The NLST algorithm is based on the fractional lower order...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods of information in medicine 2002-01, Vol.41 (4), p.331-336
Hauptverfasser: Qiu, T., Wang, H., Zhang, Y., Bao, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Objectives: To improve the latency change estimation of evoked potentials (EP) under the lower order α-stable noise conditions by proposing and analyzing a new adaptive EP latency change detection algorithm (referred to as the NLST). Methods: The NLST algorithm is based on the fractional lower order moment and the nonlinear transform for the error function. The computer simulation and data analysis verify the robustness of the new algorithm. Results: The theoretical analysis shows that the iteration equation of the NLST transforms the lower order α-stable process e n (k) into a second order moment process by a nonlinear transform. The simulations and the data analysis showed the robustness of the NLST under the lower order -stable noise conditions. Conclusions: The new algorithm is robust under the lower order α-stable noise conditions, and it also provides a better performance than the DLMS, DLMP and SDA algorithms without the need to estimate the value of the EP signals and noises.
ISSN:0026-1270
2511-705X
DOI:10.1055/s-0038-1634390