Use of Artificial Networks in Clinical Trials: A Pilot Study to Predict Responsiveness to Donepezil in Alzheimer's Disease

OBJECTIVES: To evaluate the accuracy of artificial neural networks compared with discriminant analysis in classifying positive and negative response to the cholinesterase inhibitor donepezil in a group of Alzheimer's disease (AD) patients. DESIGN: Convenience sample. SETTING: Patients with mild...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Geriatrics Society (JAGS) 2002-11, Vol.50 (11), p.1857-1860
Hauptverfasser: Mecocci, Patrizia, Grossi, Enzo, Buscema, Massimo, Intraligi, Marco, Savarè, Rita, Rinaldi, Patrizia, Cherubini, Antonio, Senin, Umberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1860
container_issue 11
container_start_page 1857
container_title Journal of the American Geriatrics Society (JAGS)
container_volume 50
creator Mecocci, Patrizia
Grossi, Enzo
Buscema, Massimo
Intraligi, Marco
Savarè, Rita
Rinaldi, Patrizia
Cherubini, Antonio
Senin, Umberto
description OBJECTIVES: To evaluate the accuracy of artificial neural networks compared with discriminant analysis in classifying positive and negative response to the cholinesterase inhibitor donepezil in a group of Alzheimer's disease (AD) patients. DESIGN: Convenience sample. SETTING: Patients with mild to moderate AD consecutively admitted to a geriatric day hospital and treated with donepezil 5 mg/day. PARTICIPANTS: Sixty‐one older patients of both sexes with AD. MEASUREMENTS: Accuracy in detecting subjects sensitive (responders) or not (nonresponders) to 3‐month therapy with ANNs. The criterion standard for evaluation of efficacy was the scores of Alzheimer's Disease Assessment Scale—Cognitive portion and Clinician's Interview Based Impression of Change—plus scales. RESULTS: ANNs were more effective in discriminating between responders and nonresponders than other advanced statistical methods, particularly linear discriminant analysis. The total accuracy in predicting the outcome was 92.59%. CONCLUSIONS: ANNs appear to be a useful tool in detecting patient responsiveness to pharmacological treatment in AD.
doi_str_mv 10.1046/j.1532-5415.2002.50516.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72653184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72653184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5586-f5b700f0df00c78fbe27c4b628a327bf6ca2e81592988b4ca62f259ba55a09063</originalsourceid><addsrcrecordid>eNqNkV1v0zAUhi0EYmXwF5CFBFwl2E78US4mVe3oQNMobNMuLcc9Fu7SpNjp1vbX46zVJnEDV7b8Pn7k4xchTElOSSk-LXLKC5bxkvKcEcJyTjgV-eYZGjwGz9GApChTgpZH6FWMC0IoI0q9REeUlZQMiRyg3XUE3Do8Cp133npT4wvo7ttwG7Fv8Lj2jbfp8CqkKH7GIzzzddvhy2493-KuxbMAc287_BPiqm2iv4MGYuyTSdvACna-7kWjevcL_BLCx4gnPoKJ8Bq9cMkJbw7rMbr-cno1PsvOv0-_jkfnmeVciczxShLiyNwRYqVyFTBpy0owZQomKyesYaAoH7KhUlVpjWCO8WFlODdpRlEcow977yq0v9cQO7300UJdmwbaddSSCV5QVf4T5FJILqVM4Lu_wEW7Dk0aQjNKClWkL0-Q2kM2tDEGcHoV_NKEraZE9y3qhe7L0n1Zum9RP7SoN-nq24N_XS1h_nTxUFsC3h8AE1M7LpjG-vjElYRRxnvuZM_d-xq2__0A_W16-bBNgmwv8LGDzaPAhFstZCG5vrmYaj6bnP24SaKy-AMWGsZY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210383614</pqid></control><display><type>article</type><title>Use of Artificial Networks in Clinical Trials: A Pilot Study to Predict Responsiveness to Donepezil in Alzheimer's Disease</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Applied Social Sciences Index &amp; Abstracts (ASSIA)</source><creator>Mecocci, Patrizia ; Grossi, Enzo ; Buscema, Massimo ; Intraligi, Marco ; Savarè, Rita ; Rinaldi, Patrizia ; Cherubini, Antonio ; Senin, Umberto</creator><creatorcontrib>Mecocci, Patrizia ; Grossi, Enzo ; Buscema, Massimo ; Intraligi, Marco ; Savarè, Rita ; Rinaldi, Patrizia ; Cherubini, Antonio ; Senin, Umberto</creatorcontrib><description>OBJECTIVES: To evaluate the accuracy of artificial neural networks compared with discriminant analysis in classifying positive and negative response to the cholinesterase inhibitor donepezil in a group of Alzheimer's disease (AD) patients. DESIGN: Convenience sample. SETTING: Patients with mild to moderate AD consecutively admitted to a geriatric day hospital and treated with donepezil 5 mg/day. PARTICIPANTS: Sixty‐one older patients of both sexes with AD. MEASUREMENTS: Accuracy in detecting subjects sensitive (responders) or not (nonresponders) to 3‐month therapy with ANNs. The criterion standard for evaluation of efficacy was the scores of Alzheimer's Disease Assessment Scale—Cognitive portion and Clinician's Interview Based Impression of Change—plus scales. RESULTS: ANNs were more effective in discriminating between responders and nonresponders than other advanced statistical methods, particularly linear discriminant analysis. The total accuracy in predicting the outcome was 92.59%. CONCLUSIONS: ANNs appear to be a useful tool in detecting patient responsiveness to pharmacological treatment in AD.</description><identifier>ISSN: 0002-8614</identifier><identifier>EISSN: 1532-5415</identifier><identifier>DOI: 10.1046/j.1532-5415.2002.50516.x</identifier><identifier>PMID: 12410907</identifier><identifier>CODEN: JAGSAF</identifier><language>eng</language><publisher>Boston, MA, USA: Blackwell Science Inc</publisher><subject>Accuracy ; Aged ; Aged, 80 and over ; Alzheimer Disease - drug therapy ; Alzheimer's disease ; artificial neural network ; Biological and medical sciences ; Cholinergic system ; Cholinesterase Inhibitors - administration &amp; dosage ; Cholinesterase Inhibitors - therapeutic use ; Clinical trials ; Clinical Trials as Topic ; Discriminant Analysis ; Donepezil ; Dose-Response Relationship, Drug ; Drug therapy ; Female ; Humans ; Indans - administration &amp; dosage ; Indans - therapeutic use ; Male ; Medical sciences ; Middle Aged ; Neural network approach ; Neural Networks (Computer) ; Neuropharmacology ; Neurotransmitters. Neurotransmission. Receptors ; Patients ; Pharmacology. Drug treatments ; Pilot Projects ; Pilot studies ; Piperidines - administration &amp; dosage ; Piperidines - therapeutic use ; prediction ; Predictions ; Predictive Value of Tests ; Predictors ; Reproducibility of Results ; responder ; Responses ; Severity of Illness Index ; treatment ; USA</subject><ispartof>Journal of the American Geriatrics Society (JAGS), 2002-11, Vol.50 (11), p.1857-1860</ispartof><rights>2003 INIST-CNRS</rights><rights>Copyright Lippincott Williams &amp; Wilkins Nov 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5586-f5b700f0df00c78fbe27c4b628a327bf6ca2e81592988b4ca62f259ba55a09063</citedby><cites>FETCH-LOGICAL-c5586-f5b700f0df00c78fbe27c4b628a327bf6ca2e81592988b4ca62f259ba55a09063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1532-5415.2002.50516.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1532-5415.2002.50516.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,30981,45555,45556</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14021257$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12410907$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mecocci, Patrizia</creatorcontrib><creatorcontrib>Grossi, Enzo</creatorcontrib><creatorcontrib>Buscema, Massimo</creatorcontrib><creatorcontrib>Intraligi, Marco</creatorcontrib><creatorcontrib>Savarè, Rita</creatorcontrib><creatorcontrib>Rinaldi, Patrizia</creatorcontrib><creatorcontrib>Cherubini, Antonio</creatorcontrib><creatorcontrib>Senin, Umberto</creatorcontrib><title>Use of Artificial Networks in Clinical Trials: A Pilot Study to Predict Responsiveness to Donepezil in Alzheimer's Disease</title><title>Journal of the American Geriatrics Society (JAGS)</title><addtitle>Journal of the American Geriatrics Society</addtitle><description>OBJECTIVES: To evaluate the accuracy of artificial neural networks compared with discriminant analysis in classifying positive and negative response to the cholinesterase inhibitor donepezil in a group of Alzheimer's disease (AD) patients. DESIGN: Convenience sample. SETTING: Patients with mild to moderate AD consecutively admitted to a geriatric day hospital and treated with donepezil 5 mg/day. PARTICIPANTS: Sixty‐one older patients of both sexes with AD. MEASUREMENTS: Accuracy in detecting subjects sensitive (responders) or not (nonresponders) to 3‐month therapy with ANNs. The criterion standard for evaluation of efficacy was the scores of Alzheimer's Disease Assessment Scale—Cognitive portion and Clinician's Interview Based Impression of Change—plus scales. RESULTS: ANNs were more effective in discriminating between responders and nonresponders than other advanced statistical methods, particularly linear discriminant analysis. The total accuracy in predicting the outcome was 92.59%. CONCLUSIONS: ANNs appear to be a useful tool in detecting patient responsiveness to pharmacological treatment in AD.</description><subject>Accuracy</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Alzheimer Disease - drug therapy</subject><subject>Alzheimer's disease</subject><subject>artificial neural network</subject><subject>Biological and medical sciences</subject><subject>Cholinergic system</subject><subject>Cholinesterase Inhibitors - administration &amp; dosage</subject><subject>Cholinesterase Inhibitors - therapeutic use</subject><subject>Clinical trials</subject><subject>Clinical Trials as Topic</subject><subject>Discriminant Analysis</subject><subject>Donepezil</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug therapy</subject><subject>Female</subject><subject>Humans</subject><subject>Indans - administration &amp; dosage</subject><subject>Indans - therapeutic use</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Neural network approach</subject><subject>Neural Networks (Computer)</subject><subject>Neuropharmacology</subject><subject>Neurotransmitters. Neurotransmission. Receptors</subject><subject>Patients</subject><subject>Pharmacology. Drug treatments</subject><subject>Pilot Projects</subject><subject>Pilot studies</subject><subject>Piperidines - administration &amp; dosage</subject><subject>Piperidines - therapeutic use</subject><subject>prediction</subject><subject>Predictions</subject><subject>Predictive Value of Tests</subject><subject>Predictors</subject><subject>Reproducibility of Results</subject><subject>responder</subject><subject>Responses</subject><subject>Severity of Illness Index</subject><subject>treatment</subject><subject>USA</subject><issn>0002-8614</issn><issn>1532-5415</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><recordid>eNqNkV1v0zAUhi0EYmXwF5CFBFwl2E78US4mVe3oQNMobNMuLcc9Fu7SpNjp1vbX46zVJnEDV7b8Pn7k4xchTElOSSk-LXLKC5bxkvKcEcJyTjgV-eYZGjwGz9GApChTgpZH6FWMC0IoI0q9REeUlZQMiRyg3XUE3Do8Cp133npT4wvo7ttwG7Fv8Lj2jbfp8CqkKH7GIzzzddvhy2493-KuxbMAc287_BPiqm2iv4MGYuyTSdvACna-7kWjevcL_BLCx4gnPoKJ8Bq9cMkJbw7rMbr-cno1PsvOv0-_jkfnmeVciczxShLiyNwRYqVyFTBpy0owZQomKyesYaAoH7KhUlVpjWCO8WFlODdpRlEcow977yq0v9cQO7300UJdmwbaddSSCV5QVf4T5FJILqVM4Lu_wEW7Dk0aQjNKClWkL0-Q2kM2tDEGcHoV_NKEraZE9y3qhe7L0n1Zum9RP7SoN-nq24N_XS1h_nTxUFsC3h8AE1M7LpjG-vjElYRRxnvuZM_d-xq2__0A_W16-bBNgmwv8LGDzaPAhFstZCG5vrmYaj6bnP24SaKy-AMWGsZY</recordid><startdate>200211</startdate><enddate>200211</enddate><creator>Mecocci, Patrizia</creator><creator>Grossi, Enzo</creator><creator>Buscema, Massimo</creator><creator>Intraligi, Marco</creator><creator>Savarè, Rita</creator><creator>Rinaldi, Patrizia</creator><creator>Cherubini, Antonio</creator><creator>Senin, Umberto</creator><general>Blackwell Science Inc</general><general>Blackwell</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7QJ</scope><scope>7X8</scope></search><sort><creationdate>200211</creationdate><title>Use of Artificial Networks in Clinical Trials: A Pilot Study to Predict Responsiveness to Donepezil in Alzheimer's Disease</title><author>Mecocci, Patrizia ; Grossi, Enzo ; Buscema, Massimo ; Intraligi, Marco ; Savarè, Rita ; Rinaldi, Patrizia ; Cherubini, Antonio ; Senin, Umberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5586-f5b700f0df00c78fbe27c4b628a327bf6ca2e81592988b4ca62f259ba55a09063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Accuracy</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Alzheimer Disease - drug therapy</topic><topic>Alzheimer's disease</topic><topic>artificial neural network</topic><topic>Biological and medical sciences</topic><topic>Cholinergic system</topic><topic>Cholinesterase Inhibitors - administration &amp; dosage</topic><topic>Cholinesterase Inhibitors - therapeutic use</topic><topic>Clinical trials</topic><topic>Clinical Trials as Topic</topic><topic>Discriminant Analysis</topic><topic>Donepezil</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug therapy</topic><topic>Female</topic><topic>Humans</topic><topic>Indans - administration &amp; dosage</topic><topic>Indans - therapeutic use</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Neural network approach</topic><topic>Neural Networks (Computer)</topic><topic>Neuropharmacology</topic><topic>Neurotransmitters. Neurotransmission. Receptors</topic><topic>Patients</topic><topic>Pharmacology. Drug treatments</topic><topic>Pilot Projects</topic><topic>Pilot studies</topic><topic>Piperidines - administration &amp; dosage</topic><topic>Piperidines - therapeutic use</topic><topic>prediction</topic><topic>Predictions</topic><topic>Predictive Value of Tests</topic><topic>Predictors</topic><topic>Reproducibility of Results</topic><topic>responder</topic><topic>Responses</topic><topic>Severity of Illness Index</topic><topic>treatment</topic><topic>USA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mecocci, Patrizia</creatorcontrib><creatorcontrib>Grossi, Enzo</creatorcontrib><creatorcontrib>Buscema, Massimo</creatorcontrib><creatorcontrib>Intraligi, Marco</creatorcontrib><creatorcontrib>Savarè, Rita</creatorcontrib><creatorcontrib>Rinaldi, Patrizia</creatorcontrib><creatorcontrib>Cherubini, Antonio</creatorcontrib><creatorcontrib>Senin, Umberto</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Applied Social Sciences Index &amp; Abstracts (ASSIA)</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Geriatrics Society (JAGS)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mecocci, Patrizia</au><au>Grossi, Enzo</au><au>Buscema, Massimo</au><au>Intraligi, Marco</au><au>Savarè, Rita</au><au>Rinaldi, Patrizia</au><au>Cherubini, Antonio</au><au>Senin, Umberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Artificial Networks in Clinical Trials: A Pilot Study to Predict Responsiveness to Donepezil in Alzheimer's Disease</atitle><jtitle>Journal of the American Geriatrics Society (JAGS)</jtitle><addtitle>Journal of the American Geriatrics Society</addtitle><date>2002-11</date><risdate>2002</risdate><volume>50</volume><issue>11</issue><spage>1857</spage><epage>1860</epage><pages>1857-1860</pages><issn>0002-8614</issn><eissn>1532-5415</eissn><coden>JAGSAF</coden><abstract>OBJECTIVES: To evaluate the accuracy of artificial neural networks compared with discriminant analysis in classifying positive and negative response to the cholinesterase inhibitor donepezil in a group of Alzheimer's disease (AD) patients. DESIGN: Convenience sample. SETTING: Patients with mild to moderate AD consecutively admitted to a geriatric day hospital and treated with donepezil 5 mg/day. PARTICIPANTS: Sixty‐one older patients of both sexes with AD. MEASUREMENTS: Accuracy in detecting subjects sensitive (responders) or not (nonresponders) to 3‐month therapy with ANNs. The criterion standard for evaluation of efficacy was the scores of Alzheimer's Disease Assessment Scale—Cognitive portion and Clinician's Interview Based Impression of Change—plus scales. RESULTS: ANNs were more effective in discriminating between responders and nonresponders than other advanced statistical methods, particularly linear discriminant analysis. The total accuracy in predicting the outcome was 92.59%. CONCLUSIONS: ANNs appear to be a useful tool in detecting patient responsiveness to pharmacological treatment in AD.</abstract><cop>Boston, MA, USA</cop><pub>Blackwell Science Inc</pub><pmid>12410907</pmid><doi>10.1046/j.1532-5415.2002.50516.x</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-8614
ispartof Journal of the American Geriatrics Society (JAGS), 2002-11, Vol.50 (11), p.1857-1860
issn 0002-8614
1532-5415
language eng
recordid cdi_proquest_miscellaneous_72653184
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Applied Social Sciences Index & Abstracts (ASSIA)
subjects Accuracy
Aged
Aged, 80 and over
Alzheimer Disease - drug therapy
Alzheimer's disease
artificial neural network
Biological and medical sciences
Cholinergic system
Cholinesterase Inhibitors - administration & dosage
Cholinesterase Inhibitors - therapeutic use
Clinical trials
Clinical Trials as Topic
Discriminant Analysis
Donepezil
Dose-Response Relationship, Drug
Drug therapy
Female
Humans
Indans - administration & dosage
Indans - therapeutic use
Male
Medical sciences
Middle Aged
Neural network approach
Neural Networks (Computer)
Neuropharmacology
Neurotransmitters. Neurotransmission. Receptors
Patients
Pharmacology. Drug treatments
Pilot Projects
Pilot studies
Piperidines - administration & dosage
Piperidines - therapeutic use
prediction
Predictions
Predictive Value of Tests
Predictors
Reproducibility of Results
responder
Responses
Severity of Illness Index
treatment
USA
title Use of Artificial Networks in Clinical Trials: A Pilot Study to Predict Responsiveness to Donepezil in Alzheimer's Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Artificial%20Networks%20in%20Clinical%20Trials:%20A%20Pilot%20Study%20to%20Predict%20Responsiveness%20to%20Donepezil%20in%20Alzheimer's%20Disease&rft.jtitle=Journal%20of%20the%20American%20Geriatrics%20Society%20(JAGS)&rft.au=Mecocci,%20Patrizia&rft.date=2002-11&rft.volume=50&rft.issue=11&rft.spage=1857&rft.epage=1860&rft.pages=1857-1860&rft.issn=0002-8614&rft.eissn=1532-5415&rft.coden=JAGSAF&rft_id=info:doi/10.1046/j.1532-5415.2002.50516.x&rft_dat=%3Cproquest_cross%3E72653184%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=210383614&rft_id=info:pmid/12410907&rfr_iscdi=true