Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature‐sensitive pSC101 replicon
Summary To facilitate efficient allelic exchange of genetic information into a wild‐type strain background, we improved upon and merged approaches using a temperature‐sensitive plasmid and a counter‐selectable marker in the chromosome. We first constructed intermediate strains of Escherichia coli K1...
Gespeichert in:
Veröffentlicht in: | Molecular microbiology 1991-06, Vol.5 (6), p.1447-1457 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1457 |
---|---|
container_issue | 6 |
container_start_page | 1447 |
container_title | Molecular microbiology |
container_volume | 5 |
creator | Blomfield, I. C. Vaughn, V. Rest, R. F. Eisenstein, B. I. |
description | Summary
To facilitate efficient allelic exchange of genetic information into a wild‐type strain background, we improved upon and merged approaches using a temperature‐sensitive plasmid and a counter‐selectable marker in the chromosome. We first constructed intermediate strains of Escherichia coli K12 in which we replaced wild‐type chromosomal sequences, at either the fimB–A or lacZ–A loci, with a newly constituted DNA cassette. The cassette consists of the sacB gene from Bacillus subtilis and the neomycin (kanamycin) resistance gene of Tn5, but, unlike another similar cassette, it lacks IS1 sequences. We found that sucrose sensitivity was highly dependent on incubation temperature and sodium chloride concentration. The DNA to be exchanged into the chromosome was first cloned into derivatives of plasmid pMAK705, a temperature‐sensitive pSC101 replicon. The exchanges were carried out in two steps, first selecting for plasmid integration by standard techniques. In the second step, we grew the plasmid integrates under non‐selective conditions at 42°C, and then in the presence of sucrose at 30°C, allowing positive selection for both plasmid excision and curing. Despite marked locus‐specific strain differences in sucrose sensitivity and in the growth retardation due to the integrated plasmids, the protocol permitted highly efficient exchange of cloned DNA into either the fim or lac chromosomal loci. This procedure should allow the exchange of any DNA segment, in addition to the original or mutant allelic DNA, into any non‐essential parts of the E. coli chromosome. |
doi_str_mv | 10.1111/j.1365-2958.1991.tb00791.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72651740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15974332</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5487-af414d97762337dc2a82f68fc4cbdbb5958e05d892ec387c8a80624424c189873</originalsourceid><addsrcrecordid>eNqVkc9u1DAQhy1EVbaFR0CyEOotW_-NbS6oXRWo1IoDIHGzHGey65U3CXYC21sfgWfkSch2V-0R4ctY-n3jGetD6A0lczqd8_Wc8lIWzEg9p8bQ-VARoqa6fYZmj9FzNCNGkoJr9v0FOsl5TQjlpOTH6JiWumSGz9D2IkaIwWPY-pVrl4BDi6-yX0EKfhUc9l0MeMyhXeJhBfjS-RDjmHEeqyHEMF2cv8RLaAG7tsYOD7DpIblhTPDn_neGNoch_ATcf1lQQnGCfhrXtS_RUeNihleHeoq-fbj6uvhU3Hz-eL24uCm8FFoVrhFU1EapknGuas-cZk2pGy98VVeVnP4JRNbaMPBcK6-dJiUTgglPtdGKn6Kz_bt96n6MkAe7CdlDjK6FbsxWsVJSJcg_QSqNEpyzCXy3B33qck7Q2D6FjUt3lhK782PXdifB7iTYnR978GO3U_Prw5Sx2kD91LoXMuVvD7nL3sUmudaH_IgJIwV72OH9HvsVItz9xwL29vaaCqH4XxB4rig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15974332</pqid></control><display><type>article</type><title>Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature‐sensitive pSC101 replicon</title><source>MEDLINE</source><source>Wiley Online Library All Journals</source><creator>Blomfield, I. C. ; Vaughn, V. ; Rest, R. F. ; Eisenstein, B. I.</creator><creatorcontrib>Blomfield, I. C. ; Vaughn, V. ; Rest, R. F. ; Eisenstein, B. I.</creatorcontrib><description>Summary
To facilitate efficient allelic exchange of genetic information into a wild‐type strain background, we improved upon and merged approaches using a temperature‐sensitive plasmid and a counter‐selectable marker in the chromosome. We first constructed intermediate strains of Escherichia coli K12 in which we replaced wild‐type chromosomal sequences, at either the fimB–A or lacZ–A loci, with a newly constituted DNA cassette. The cassette consists of the sacB gene from Bacillus subtilis and the neomycin (kanamycin) resistance gene of Tn5, but, unlike another similar cassette, it lacks IS1 sequences. We found that sucrose sensitivity was highly dependent on incubation temperature and sodium chloride concentration. The DNA to be exchanged into the chromosome was first cloned into derivatives of plasmid pMAK705, a temperature‐sensitive pSC101 replicon. The exchanges were carried out in two steps, first selecting for plasmid integration by standard techniques. In the second step, we grew the plasmid integrates under non‐selective conditions at 42°C, and then in the presence of sucrose at 30°C, allowing positive selection for both plasmid excision and curing. Despite marked locus‐specific strain differences in sucrose sensitivity and in the growth retardation due to the integrated plasmids, the protocol permitted highly efficient exchange of cloned DNA into either the fim or lac chromosomal loci. This procedure should allow the exchange of any DNA segment, in addition to the original or mutant allelic DNA, into any non‐essential parts of the E. coli chromosome.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/j.1365-2958.1991.tb00791.x</identifier><identifier>PMID: 1686293</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Alleles ; Bacillus subtilis - genetics ; Biological and medical sciences ; Biotechnology ; DNA Transposable Elements - genetics ; Enzyme-Linked Immunosorbent Assay ; Escherichia coli - drug effects ; Escherichia coli - genetics ; Fimbriae, Bacterial ; Fundamental and applied biological sciences. Psychology ; Genetic engineering ; Genetic technics ; Lac Operon - genetics ; Methods. Procedures. Technologies ; Plasmids - genetics ; Recombination, Genetic - genetics ; Replicon - genetics ; Sodium Chloride - pharmacology ; Sucrose - pharmacology ; Temperature ; Vectors (cloning, transfer, expression). Insertion sequences and transposons</subject><ispartof>Molecular microbiology, 1991-06, Vol.5 (6), p.1447-1457</ispartof><rights>1992 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5487-af414d97762337dc2a82f68fc4cbdbb5958e05d892ec387c8a80624424c189873</citedby><cites>FETCH-LOGICAL-c5487-af414d97762337dc2a82f68fc4cbdbb5958e05d892ec387c8a80624424c189873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-2958.1991.tb00791.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-2958.1991.tb00791.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4954232$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1686293$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blomfield, I. C.</creatorcontrib><creatorcontrib>Vaughn, V.</creatorcontrib><creatorcontrib>Rest, R. F.</creatorcontrib><creatorcontrib>Eisenstein, B. I.</creatorcontrib><title>Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature‐sensitive pSC101 replicon</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary
To facilitate efficient allelic exchange of genetic information into a wild‐type strain background, we improved upon and merged approaches using a temperature‐sensitive plasmid and a counter‐selectable marker in the chromosome. We first constructed intermediate strains of Escherichia coli K12 in which we replaced wild‐type chromosomal sequences, at either the fimB–A or lacZ–A loci, with a newly constituted DNA cassette. The cassette consists of the sacB gene from Bacillus subtilis and the neomycin (kanamycin) resistance gene of Tn5, but, unlike another similar cassette, it lacks IS1 sequences. We found that sucrose sensitivity was highly dependent on incubation temperature and sodium chloride concentration. The DNA to be exchanged into the chromosome was first cloned into derivatives of plasmid pMAK705, a temperature‐sensitive pSC101 replicon. The exchanges were carried out in two steps, first selecting for plasmid integration by standard techniques. In the second step, we grew the plasmid integrates under non‐selective conditions at 42°C, and then in the presence of sucrose at 30°C, allowing positive selection for both plasmid excision and curing. Despite marked locus‐specific strain differences in sucrose sensitivity and in the growth retardation due to the integrated plasmids, the protocol permitted highly efficient exchange of cloned DNA into either the fim or lac chromosomal loci. This procedure should allow the exchange of any DNA segment, in addition to the original or mutant allelic DNA, into any non‐essential parts of the E. coli chromosome.</description><subject>Alleles</subject><subject>Bacillus subtilis - genetics</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>DNA Transposable Elements - genetics</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>Fimbriae, Bacterial</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic engineering</subject><subject>Genetic technics</subject><subject>Lac Operon - genetics</subject><subject>Methods. Procedures. Technologies</subject><subject>Plasmids - genetics</subject><subject>Recombination, Genetic - genetics</subject><subject>Replicon - genetics</subject><subject>Sodium Chloride - pharmacology</subject><subject>Sucrose - pharmacology</subject><subject>Temperature</subject><subject>Vectors (cloning, transfer, expression). Insertion sequences and transposons</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkc9u1DAQhy1EVbaFR0CyEOotW_-NbS6oXRWo1IoDIHGzHGey65U3CXYC21sfgWfkSch2V-0R4ctY-n3jGetD6A0lczqd8_Wc8lIWzEg9p8bQ-VARoqa6fYZmj9FzNCNGkoJr9v0FOsl5TQjlpOTH6JiWumSGz9D2IkaIwWPY-pVrl4BDi6-yX0EKfhUc9l0MeMyhXeJhBfjS-RDjmHEeqyHEMF2cv8RLaAG7tsYOD7DpIblhTPDn_neGNoch_ATcf1lQQnGCfhrXtS_RUeNihleHeoq-fbj6uvhU3Hz-eL24uCm8FFoVrhFU1EapknGuas-cZk2pGy98VVeVnP4JRNbaMPBcK6-dJiUTgglPtdGKn6Kz_bt96n6MkAe7CdlDjK6FbsxWsVJSJcg_QSqNEpyzCXy3B33qck7Q2D6FjUt3lhK782PXdifB7iTYnR978GO3U_Prw5Sx2kD91LoXMuVvD7nL3sUmudaH_IgJIwV72OH9HvsVItz9xwL29vaaCqH4XxB4rig</recordid><startdate>199106</startdate><enddate>199106</enddate><creator>Blomfield, I. C.</creator><creator>Vaughn, V.</creator><creator>Rest, R. F.</creator><creator>Eisenstein, B. I.</creator><general>Blackwell Publishing Ltd</general><general>Blackwell Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>199106</creationdate><title>Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature‐sensitive pSC101 replicon</title><author>Blomfield, I. C. ; Vaughn, V. ; Rest, R. F. ; Eisenstein, B. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5487-af414d97762337dc2a82f68fc4cbdbb5958e05d892ec387c8a80624424c189873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Alleles</topic><topic>Bacillus subtilis - genetics</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>DNA Transposable Elements - genetics</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>Fimbriae, Bacterial</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic engineering</topic><topic>Genetic technics</topic><topic>Lac Operon - genetics</topic><topic>Methods. Procedures. Technologies</topic><topic>Plasmids - genetics</topic><topic>Recombination, Genetic - genetics</topic><topic>Replicon - genetics</topic><topic>Sodium Chloride - pharmacology</topic><topic>Sucrose - pharmacology</topic><topic>Temperature</topic><topic>Vectors (cloning, transfer, expression). Insertion sequences and transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blomfield, I. C.</creatorcontrib><creatorcontrib>Vaughn, V.</creatorcontrib><creatorcontrib>Rest, R. F.</creatorcontrib><creatorcontrib>Eisenstein, B. I.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blomfield, I. C.</au><au>Vaughn, V.</au><au>Rest, R. F.</au><au>Eisenstein, B. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature‐sensitive pSC101 replicon</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>1991-06</date><risdate>1991</risdate><volume>5</volume><issue>6</issue><spage>1447</spage><epage>1457</epage><pages>1447-1457</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>Summary
To facilitate efficient allelic exchange of genetic information into a wild‐type strain background, we improved upon and merged approaches using a temperature‐sensitive plasmid and a counter‐selectable marker in the chromosome. We first constructed intermediate strains of Escherichia coli K12 in which we replaced wild‐type chromosomal sequences, at either the fimB–A or lacZ–A loci, with a newly constituted DNA cassette. The cassette consists of the sacB gene from Bacillus subtilis and the neomycin (kanamycin) resistance gene of Tn5, but, unlike another similar cassette, it lacks IS1 sequences. We found that sucrose sensitivity was highly dependent on incubation temperature and sodium chloride concentration. The DNA to be exchanged into the chromosome was first cloned into derivatives of plasmid pMAK705, a temperature‐sensitive pSC101 replicon. The exchanges were carried out in two steps, first selecting for plasmid integration by standard techniques. In the second step, we grew the plasmid integrates under non‐selective conditions at 42°C, and then in the presence of sucrose at 30°C, allowing positive selection for both plasmid excision and curing. Despite marked locus‐specific strain differences in sucrose sensitivity and in the growth retardation due to the integrated plasmids, the protocol permitted highly efficient exchange of cloned DNA into either the fim or lac chromosomal loci. This procedure should allow the exchange of any DNA segment, in addition to the original or mutant allelic DNA, into any non‐essential parts of the E. coli chromosome.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>1686293</pmid><doi>10.1111/j.1365-2958.1991.tb00791.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0950-382X |
ispartof | Molecular microbiology, 1991-06, Vol.5 (6), p.1447-1457 |
issn | 0950-382X 1365-2958 |
language | eng |
recordid | cdi_proquest_miscellaneous_72651740 |
source | MEDLINE; Wiley Online Library All Journals |
subjects | Alleles Bacillus subtilis - genetics Biological and medical sciences Biotechnology DNA Transposable Elements - genetics Enzyme-Linked Immunosorbent Assay Escherichia coli - drug effects Escherichia coli - genetics Fimbriae, Bacterial Fundamental and applied biological sciences. Psychology Genetic engineering Genetic technics Lac Operon - genetics Methods. Procedures. Technologies Plasmids - genetics Recombination, Genetic - genetics Replicon - genetics Sodium Chloride - pharmacology Sucrose - pharmacology Temperature Vectors (cloning, transfer, expression). Insertion sequences and transposons |
title | Allelic exchange in Escherichia coli using the Bacillus subtilis sacB gene and a temperature‐sensitive pSC101 replicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Allelic%20exchange%20in%20Escherichia%20coli%20using%20the%20Bacillus%20subtilis%20sacB%20gene%20and%20a%20temperature%E2%80%90sensitive%20pSC101%20replicon&rft.jtitle=Molecular%20microbiology&rft.au=Blomfield,%20I.%20C.&rft.date=1991-06&rft.volume=5&rft.issue=6&rft.spage=1447&rft.epage=1457&rft.pages=1447-1457&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/j.1365-2958.1991.tb00791.x&rft_dat=%3Cproquest_cross%3E15974332%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15974332&rft_id=info:pmid/1686293&rfr_iscdi=true |