Recovery of known T-cell epitopes by computational scanning of a viral genome

A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-pepti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer-aided molecular design 2002-04, Vol.16 (4), p.229-243
Hauptverfasser: Logean, Antoine, Rognan, Didier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 4
container_start_page 229
container_title Journal of computer-aided molecular design
container_volume 16
creator Logean, Antoine
Rognan, Didier
description A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.
doi_str_mv 10.1023/A:1020244329512
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72624263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72624263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-24cffdb9c399e000149aa279ce4d1cff881dd8e55be9f08901f9fc72e28cfdd23</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRbK2evcniwVt0P5Ndb6X4BRVBKngLm81sSW2yMZtU-t-7xXrx4ukxM78Z3jyEzim5poTxm-ltFMKE4ExLyg7QmMqMJyIWh2hMNCNJKsX7CJ2EsCKEZDolx2hEmSBESTFGz69g_Qa6LfYOfzT-q8GLxMJ6jaGtet9CwMUWW1-3Q2_6yjdmjYM1TVM1y92KwZuqi70lNL6GU3TkzDrA2V4n6O3-bjF7TOYvD0-z6TyxXGZ9woR1riy05VpDdEWFNoZl2oIoaRwpRctSgZQFaEeUJtRpZzMGTFlXloxP0NXP3bbznwOEPq-rsHNtGvBDyDOWMsFS_i9IYwiKcxXByz_gyg9d_DYe40oSLrSO0MUeGooayrztqtp02_w3Tv4NsZt2sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>738503499</pqid></control><display><type>article</type><title>Recovery of known T-cell epitopes by computational scanning of a viral genome</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Logean, Antoine ; Rognan, Didier</creator><creatorcontrib>Logean, Antoine ; Rognan, Didier</creatorcontrib><description>A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.</description><identifier>ISSN: 0920-654X</identifier><identifier>EISSN: 1573-4951</identifier><identifier>DOI: 10.1023/A:1020244329512</identifier><identifier>PMID: 12400854</identifier><language>eng</language><publisher>Netherlands: Springer Nature B.V</publisher><subject>Alleles ; Amino Acid Motifs ; Amino Acid Sequence ; Amino acids ; Binders ; Databases, Genetic ; Epitope Mapping - statistics &amp; numerical data ; Genome, Viral ; Hepatitis B Antigens - genetics ; Hepatitis B virus - genetics ; Hepatitis B virus - immunology ; HLA-A Antigens - genetics ; HLA-A Antigens - metabolism ; HLA-A2 Antigen ; HLA-B Antigens - genetics ; HLA-B Antigens - metabolism ; HLA-B27 Antigen ; Humans ; Immunodominant Epitopes - genetics ; In Vitro Techniques ; Peptides ; Protein Binding ; Proteins ; Software ; T-Lymphocytes - immunology ; Thermodynamics</subject><ispartof>Journal of computer-aided molecular design, 2002-04, Vol.16 (4), p.229-243</ispartof><rights>Kluwer Academic Publishers 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-24cffdb9c399e000149aa279ce4d1cff881dd8e55be9f08901f9fc72e28cfdd23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12400854$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Logean, Antoine</creatorcontrib><creatorcontrib>Rognan, Didier</creatorcontrib><title>Recovery of known T-cell epitopes by computational scanning of a viral genome</title><title>Journal of computer-aided molecular design</title><addtitle>J Comput Aided Mol Des</addtitle><description>A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.</description><subject>Alleles</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Binders</subject><subject>Databases, Genetic</subject><subject>Epitope Mapping - statistics &amp; numerical data</subject><subject>Genome, Viral</subject><subject>Hepatitis B Antigens - genetics</subject><subject>Hepatitis B virus - genetics</subject><subject>Hepatitis B virus - immunology</subject><subject>HLA-A Antigens - genetics</subject><subject>HLA-A Antigens - metabolism</subject><subject>HLA-A2 Antigen</subject><subject>HLA-B Antigens - genetics</subject><subject>HLA-B Antigens - metabolism</subject><subject>HLA-B27 Antigen</subject><subject>Humans</subject><subject>Immunodominant Epitopes - genetics</subject><subject>In Vitro Techniques</subject><subject>Peptides</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Software</subject><subject>T-Lymphocytes - immunology</subject><subject>Thermodynamics</subject><issn>0920-654X</issn><issn>1573-4951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkM1Lw0AQxRdRbK2evcniwVt0P5Ndb6X4BRVBKngLm81sSW2yMZtU-t-7xXrx4ukxM78Z3jyEzim5poTxm-ltFMKE4ExLyg7QmMqMJyIWh2hMNCNJKsX7CJ2EsCKEZDolx2hEmSBESTFGz69g_Qa6LfYOfzT-q8GLxMJ6jaGtet9CwMUWW1-3Q2_6yjdmjYM1TVM1y92KwZuqi70lNL6GU3TkzDrA2V4n6O3-bjF7TOYvD0-z6TyxXGZ9woR1riy05VpDdEWFNoZl2oIoaRwpRctSgZQFaEeUJtRpZzMGTFlXloxP0NXP3bbznwOEPq-rsHNtGvBDyDOWMsFS_i9IYwiKcxXByz_gyg9d_DYe40oSLrSO0MUeGooayrztqtp02_w3Tv4NsZt2sA</recordid><startdate>200204</startdate><enddate>200204</enddate><creator>Logean, Antoine</creator><creator>Rognan, Didier</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7U9</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>200204</creationdate><title>Recovery of known T-cell epitopes by computational scanning of a viral genome</title><author>Logean, Antoine ; Rognan, Didier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-24cffdb9c399e000149aa279ce4d1cff881dd8e55be9f08901f9fc72e28cfdd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Alleles</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Binders</topic><topic>Databases, Genetic</topic><topic>Epitope Mapping - statistics &amp; numerical data</topic><topic>Genome, Viral</topic><topic>Hepatitis B Antigens - genetics</topic><topic>Hepatitis B virus - genetics</topic><topic>Hepatitis B virus - immunology</topic><topic>HLA-A Antigens - genetics</topic><topic>HLA-A Antigens - metabolism</topic><topic>HLA-A2 Antigen</topic><topic>HLA-B Antigens - genetics</topic><topic>HLA-B Antigens - metabolism</topic><topic>HLA-B27 Antigen</topic><topic>Humans</topic><topic>Immunodominant Epitopes - genetics</topic><topic>In Vitro Techniques</topic><topic>Peptides</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Software</topic><topic>T-Lymphocytes - immunology</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Logean, Antoine</creatorcontrib><creatorcontrib>Rognan, Didier</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of computer-aided molecular design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Logean, Antoine</au><au>Rognan, Didier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recovery of known T-cell epitopes by computational scanning of a viral genome</atitle><jtitle>Journal of computer-aided molecular design</jtitle><addtitle>J Comput Aided Mol Des</addtitle><date>2002-04</date><risdate>2002</risdate><volume>16</volume><issue>4</issue><spage>229</spage><epage>243</epage><pages>229-243</pages><issn>0920-654X</issn><eissn>1573-4951</eissn><abstract>A new computational method (EpiDock) is proposed for predicting peptide binding to class I MHC proteins, from the amino acid sequence of any protein of immunological interest. Starting from the primary structure of the target protein, individual three-dimensional structures of all possible MHC-peptide (8-, 9- and 10-mers) complexes are obtained by homology modelling. A free energy scoring function (Fresno) is then used to predict the absolute binding free energy of all possible peptides to the class I MHC restriction protein. Assuming that immunodominant epitopes are usually found among the top MHC binders, the method can thus be applied to predict the location of immunogenic peptides on the sequence of the protein target. When applied to the prediction of HLA-A*0201-restricted T-cell epitopes from the Hepatitis B virus, EpiDock was able to recover 92% of known high affinity binders and 80% of known epitopes within a filtered subset of all possible nonapeptides corresponding to about one tenth of the full theoretical list. The proposed method is fully automated and fast enough to scan a viral genome in less than an hour on a parallel computing architecture. As it requires very few starting experimental data, EpiDock can be used: (i) to predict potential T-cell epitopes from viral genomes (ii) to roughly predict still unknown peptide binding motifs for novel class I MHC alleles.</abstract><cop>Netherlands</cop><pub>Springer Nature B.V</pub><pmid>12400854</pmid><doi>10.1023/A:1020244329512</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-654X
ispartof Journal of computer-aided molecular design, 2002-04, Vol.16 (4), p.229-243
issn 0920-654X
1573-4951
language eng
recordid cdi_proquest_miscellaneous_72624263
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Alleles
Amino Acid Motifs
Amino Acid Sequence
Amino acids
Binders
Databases, Genetic
Epitope Mapping - statistics & numerical data
Genome, Viral
Hepatitis B Antigens - genetics
Hepatitis B virus - genetics
Hepatitis B virus - immunology
HLA-A Antigens - genetics
HLA-A Antigens - metabolism
HLA-A2 Antigen
HLA-B Antigens - genetics
HLA-B Antigens - metabolism
HLA-B27 Antigen
Humans
Immunodominant Epitopes - genetics
In Vitro Techniques
Peptides
Protein Binding
Proteins
Software
T-Lymphocytes - immunology
Thermodynamics
title Recovery of known T-cell epitopes by computational scanning of a viral genome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T13%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recovery%20of%20known%20T-cell%20epitopes%20by%20computational%20scanning%20of%20a%20viral%20genome&rft.jtitle=Journal%20of%20computer-aided%20molecular%20design&rft.au=Logean,%20Antoine&rft.date=2002-04&rft.volume=16&rft.issue=4&rft.spage=229&rft.epage=243&rft.pages=229-243&rft.issn=0920-654X&rft.eissn=1573-4951&rft_id=info:doi/10.1023/A:1020244329512&rft_dat=%3Cproquest_pubme%3E72624263%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=738503499&rft_id=info:pmid/12400854&rfr_iscdi=true