Evolution of protein synthesis in a lattice model of replicators
The traditional chemical-kinetics approach to the study of prebiotic evolution cannot explain the evolution of protein synthesis in a homogeneous population of self-replicating molecules, because the invasion of a resident population of simpler, template-directed replicators by mutant protein-assist...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2002-10, Vol.89 (18), p.188101-188101, Article 188101 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 188101 |
---|---|
container_issue | 18 |
container_start_page | 188101 |
container_title | Physical review letters |
container_volume | 89 |
creator | Rosas, A Ferreira, C P Fontanari, J F |
description | The traditional chemical-kinetics approach to the study of prebiotic evolution cannot explain the evolution of protein synthesis in a homogeneous population of self-replicating molecules, because the invasion of a resident population of simpler, template-directed replicators by mutant protein-assisted replicators is deemed impossible. Approaching this problem in a spatial cellular automaton framework, we argue here that in such a setting evolution of protein synthesis is a likely event. In addition, we show that the onset of invasion may be viewed as a nonequilibrium phase transition, that can be characterized quantitatively by a set of critical exponents. |
doi_str_mv | 10.1103/PhysRevLett.89.188101 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72613658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72613658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-371c78b658b5ce791e940786b71cfbf2245f39459e4b6b604fdb9fb56444e9013</originalsourceid><addsrcrecordid>eNpNkFtLw0AQhRdRbK3-BCVPvqXOZDd7eVOkXqCgiD6HbDpLI0m2ZjeF_ntTWtCnYYZzzhw-xq4R5ojA797Xu_BB2yXFONdmjloj4AmbIiiTKkRxyqYAHFMDoCbsIoRvAMBM6nM2wYwbLbmZsvvF1jdDrH2XeJdseh-p7pKw6-KaQh2ScSmTpoyxrihp_Yqava6nTVNXZfR9uGRnrmwCXR3njH09LT4fX9Ll2_Pr48MyrTiomHKFldJW5trmFSmDZAQoLe14d9ZlmcgdNyI3JKy0EoRbWeNsLoUQZAD5jN0ecseOPwOFWLR1qKhpyo78EAqVSeRj_CjMD8Kq9yH05IpNX7dlvysQij264h-6QpvigG703RwfDLal1Z_ryIr_AmhGbRY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72613658</pqid></control><display><type>article</type><title>Evolution of protein synthesis in a lattice model of replicators</title><source>MEDLINE</source><source>APS: American Physical Society E-Journals (Physics)</source><creator>Rosas, A ; Ferreira, C P ; Fontanari, J F</creator><creatorcontrib>Rosas, A ; Ferreira, C P ; Fontanari, J F</creatorcontrib><description>The traditional chemical-kinetics approach to the study of prebiotic evolution cannot explain the evolution of protein synthesis in a homogeneous population of self-replicating molecules, because the invasion of a resident population of simpler, template-directed replicators by mutant protein-assisted replicators is deemed impossible. Approaching this problem in a spatial cellular automaton framework, we argue here that in such a setting evolution of protein synthesis is a likely event. In addition, we show that the onset of invasion may be viewed as a nonequilibrium phase transition, that can be characterized quantitatively by a set of critical exponents.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.89.188101</identifier><identifier>PMID: 12398639</identifier><language>eng</language><publisher>United States</publisher><subject>Models, Biological ; Nucleic Acids - biosynthesis ; Nucleic Acids - genetics ; Protein Biosynthesis ; Proteins - genetics</subject><ispartof>Physical review letters, 2002-10, Vol.89 (18), p.188101-188101, Article 188101</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-371c78b658b5ce791e940786b71cfbf2245f39459e4b6b604fdb9fb56444e9013</citedby><cites>FETCH-LOGICAL-c307t-371c78b658b5ce791e940786b71cfbf2245f39459e4b6b604fdb9fb56444e9013</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12398639$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosas, A</creatorcontrib><creatorcontrib>Ferreira, C P</creatorcontrib><creatorcontrib>Fontanari, J F</creatorcontrib><title>Evolution of protein synthesis in a lattice model of replicators</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The traditional chemical-kinetics approach to the study of prebiotic evolution cannot explain the evolution of protein synthesis in a homogeneous population of self-replicating molecules, because the invasion of a resident population of simpler, template-directed replicators by mutant protein-assisted replicators is deemed impossible. Approaching this problem in a spatial cellular automaton framework, we argue here that in such a setting evolution of protein synthesis is a likely event. In addition, we show that the onset of invasion may be viewed as a nonequilibrium phase transition, that can be characterized quantitatively by a set of critical exponents.</description><subject>Models, Biological</subject><subject>Nucleic Acids - biosynthesis</subject><subject>Nucleic Acids - genetics</subject><subject>Protein Biosynthesis</subject><subject>Proteins - genetics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkFtLw0AQhRdRbK3-BCVPvqXOZDd7eVOkXqCgiD6HbDpLI0m2ZjeF_ntTWtCnYYZzzhw-xq4R5ojA797Xu_BB2yXFONdmjloj4AmbIiiTKkRxyqYAHFMDoCbsIoRvAMBM6nM2wYwbLbmZsvvF1jdDrH2XeJdseh-p7pKw6-KaQh2ScSmTpoyxrihp_Yqava6nTVNXZfR9uGRnrmwCXR3njH09LT4fX9Ll2_Pr48MyrTiomHKFldJW5trmFSmDZAQoLe14d9ZlmcgdNyI3JKy0EoRbWeNsLoUQZAD5jN0ecseOPwOFWLR1qKhpyo78EAqVSeRj_CjMD8Kq9yH05IpNX7dlvysQij264h-6QpvigG703RwfDLal1Z_ryIr_AmhGbRY</recordid><startdate>20021028</startdate><enddate>20021028</enddate><creator>Rosas, A</creator><creator>Ferreira, C P</creator><creator>Fontanari, J F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20021028</creationdate><title>Evolution of protein synthesis in a lattice model of replicators</title><author>Rosas, A ; Ferreira, C P ; Fontanari, J F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-371c78b658b5ce791e940786b71cfbf2245f39459e4b6b604fdb9fb56444e9013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Models, Biological</topic><topic>Nucleic Acids - biosynthesis</topic><topic>Nucleic Acids - genetics</topic><topic>Protein Biosynthesis</topic><topic>Proteins - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosas, A</creatorcontrib><creatorcontrib>Ferreira, C P</creatorcontrib><creatorcontrib>Fontanari, J F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosas, A</au><au>Ferreira, C P</au><au>Fontanari, J F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of protein synthesis in a lattice model of replicators</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2002-10-28</date><risdate>2002</risdate><volume>89</volume><issue>18</issue><spage>188101</spage><epage>188101</epage><pages>188101-188101</pages><artnum>188101</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The traditional chemical-kinetics approach to the study of prebiotic evolution cannot explain the evolution of protein synthesis in a homogeneous population of self-replicating molecules, because the invasion of a resident population of simpler, template-directed replicators by mutant protein-assisted replicators is deemed impossible. Approaching this problem in a spatial cellular automaton framework, we argue here that in such a setting evolution of protein synthesis is a likely event. In addition, we show that the onset of invasion may be viewed as a nonequilibrium phase transition, that can be characterized quantitatively by a set of critical exponents.</abstract><cop>United States</cop><pmid>12398639</pmid><doi>10.1103/PhysRevLett.89.188101</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2002-10, Vol.89 (18), p.188101-188101, Article 188101 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_proquest_miscellaneous_72613658 |
source | MEDLINE; APS: American Physical Society E-Journals (Physics) |
subjects | Models, Biological Nucleic Acids - biosynthesis Nucleic Acids - genetics Protein Biosynthesis Proteins - genetics |
title | Evolution of protein synthesis in a lattice model of replicators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A35%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20protein%20synthesis%20in%20a%20lattice%20model%20of%20replicators&rft.jtitle=Physical%20review%20letters&rft.au=Rosas,%20A&rft.date=2002-10-28&rft.volume=89&rft.issue=18&rft.spage=188101&rft.epage=188101&rft.pages=188101-188101&rft.artnum=188101&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.89.188101&rft_dat=%3Cproquest_cross%3E72613658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72613658&rft_id=info:pmid/12398639&rfr_iscdi=true |