Effects of Trimebutine on Intestinal Motility after Massive Small Bowel Resection

Effects of trimebutine maleate (TM) on intestinal motility in short bowel syndrome (SBS) were studied in conscious canines in both acute and chronic phases following 80% massive distal small bowel resection (MSBR). TM was administered orally to beagles with MSBR or as controls in the postprandial an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Smooth Muscle Research 2000, Vol.36(4), pp.117-126
Hauptverfasser: UCHIYAMA, Masanori, IWAFUCHI, Makoto, YAGI, Minoru, IINUMA, Yasushi, KANADA, Satoshi, OHTAKI, Masahiro, HOMMA, Shinji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Effects of trimebutine maleate (TM) on intestinal motility in short bowel syndrome (SBS) were studied in conscious canines in both acute and chronic phases following 80% massive distal small bowel resection (MSBR). TM was administered orally to beagles with MSBR or as controls in the postprandial and fasting states, and given simultaneously with meals. Intestinal motility was measured using bipolar electrodes for approximately 1 month after the electrodes were implanted in each beagle and the data compared between treatment groups. When TM was given with meals, the postprandial period without duodenal migrating myoelectric (or motor) complexes (MMCs) was shorter than in those given meals only. When TM was given in the postprandial state in short bowel beagles, the initial duodenal MMCs occurred earlier, i, e, the postprandial period was shorter. Diarrhea did not occur in these beagles. When TM was given in the fasting state, duodenal MMCs occurred and propagated to the distal intestine. In conclusion, oral TM administration can produce a more appropriate Intestinal condition for the next food intake and make enteral nutrition possible even in the acute phase after MSBR. Such feeding can be carried out without overloading gut function as a result of the modulation of gastrointestinal motility by TM.
ISSN:0916-8737
1884-8796
DOI:10.1540/jsmr.36.117