Inverse vs. classical calibration for small data sets

In classical calibration, the statistically uncertain variable y is regressed on the error-free variable x for a number of known samples, and the results are used to estimate the x value (x0) for an unknown sample from its measured y value (y0). It has long been known that inverse calibration--regre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fresenius' journal of analytical chemistry 2000-11, Vol.368 (6), p.585-588
1. Verfasser: TELLINGHUISEN, Joel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 588
container_issue 6
container_start_page 585
container_title Fresenius' journal of analytical chemistry
container_volume 368
creator TELLINGHUISEN, Joel
description In classical calibration, the statistically uncertain variable y is regressed on the error-free variable x for a number of known samples, and the results are used to estimate the x value (x0) for an unknown sample from its measured y value (y0). It has long been known that inverse calibration--regression of x on y for the same data--is more efficient in its prediction of x0 from y0 than the seemingly more appropriate classical procedure, over large ranges of the controlled variable x. In the present work, theoretical expressions and Monte Carlo calculations are used to illustrate that the comparison favors the inverse procedure even more for small calibration data sets than for the large sets that have been emphasized in previous studies.
doi_str_mv 10.1007/s002160000556
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72567382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72567382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-74feaaf3b47784143acff8364b7a851767824d8298e55947a45666dc55a480bc3</originalsourceid><addsrcrecordid>eNpV0EtLw0AQwPFFFFurR68SELyl7ns2Ryk-CgUveg6TzQYiedSdtOC3d6VFcWHYy49h-DN2LfhScA73xLkUlqdnjD1hc6GVzIVQ_JTNeaEg51apGbsg-uA_tJDnbCaElA44zJlZD_sQKWR7Wma-Q6LWY5elaauIUzsOWTPGjHrsuqzGCTMKE12yswY7ClfHf8Henx7fVi_55vV5vXrY5F4JmHLQTUBsVKUBnE6XoW8ap6yuAJ0RYMFJXTtZuGBMoQG1sdbW3hjUjldeLdjdYe82jp-7QFPZt-RD1-EQxh2VII0F5WSC-QH6OBLF0JTb2PYYv0rBy59O5b9Oyd8cF--qPtR_-hgmgdsjQEoxmoiDb-nXgYMidf0GEyxs5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72567382</pqid></control><display><type>article</type><title>Inverse vs. classical calibration for small data sets</title><source>SpringerLink Journals - AutoHoldings</source><creator>TELLINGHUISEN, Joel</creator><creatorcontrib>TELLINGHUISEN, Joel</creatorcontrib><description>In classical calibration, the statistically uncertain variable y is regressed on the error-free variable x for a number of known samples, and the results are used to estimate the x value (x0) for an unknown sample from its measured y value (y0). It has long been known that inverse calibration--regression of x on y for the same data--is more efficient in its prediction of x0 from y0 than the seemingly more appropriate classical procedure, over large ranges of the controlled variable x. In the present work, theoretical expressions and Monte Carlo calculations are used to illustrate that the comparison favors the inverse procedure even more for small calibration data sets than for the large sets that have been emphasized in previous studies.</description><identifier>ISSN: 0937-0633</identifier><identifier>EISSN: 1432-1130</identifier><identifier>DOI: 10.1007/s002160000556</identifier><identifier>PMID: 11228707</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Analytical chemistry ; Chemistry ; Exact sciences and technology ; General, instrumentation</subject><ispartof>Fresenius' journal of analytical chemistry, 2000-11, Vol.368 (6), p.585-588</ispartof><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c317t-74feaaf3b47784143acff8364b7a851767824d8298e55947a45666dc55a480bc3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=787963$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11228707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>TELLINGHUISEN, Joel</creatorcontrib><title>Inverse vs. classical calibration for small data sets</title><title>Fresenius' journal of analytical chemistry</title><addtitle>Fresenius J Anal Chem</addtitle><description>In classical calibration, the statistically uncertain variable y is regressed on the error-free variable x for a number of known samples, and the results are used to estimate the x value (x0) for an unknown sample from its measured y value (y0). It has long been known that inverse calibration--regression of x on y for the same data--is more efficient in its prediction of x0 from y0 than the seemingly more appropriate classical procedure, over large ranges of the controlled variable x. In the present work, theoretical expressions and Monte Carlo calculations are used to illustrate that the comparison favors the inverse procedure even more for small calibration data sets than for the large sets that have been emphasized in previous studies.</description><subject>Analytical chemistry</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General, instrumentation</subject><issn>0937-0633</issn><issn>1432-1130</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpV0EtLw0AQwPFFFFurR68SELyl7ns2Ryk-CgUveg6TzQYiedSdtOC3d6VFcWHYy49h-DN2LfhScA73xLkUlqdnjD1hc6GVzIVQ_JTNeaEg51apGbsg-uA_tJDnbCaElA44zJlZD_sQKWR7Wma-Q6LWY5elaauIUzsOWTPGjHrsuqzGCTMKE12yswY7ClfHf8Henx7fVi_55vV5vXrY5F4JmHLQTUBsVKUBnE6XoW8ap6yuAJ0RYMFJXTtZuGBMoQG1sdbW3hjUjldeLdjdYe82jp-7QFPZt-RD1-EQxh2VII0F5WSC-QH6OBLF0JTb2PYYv0rBy59O5b9Oyd8cF--qPtR_-hgmgdsjQEoxmoiDb-nXgYMidf0GEyxs5w</recordid><startdate>20001101</startdate><enddate>20001101</enddate><creator>TELLINGHUISEN, Joel</creator><general>Springer</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20001101</creationdate><title>Inverse vs. classical calibration for small data sets</title><author>TELLINGHUISEN, Joel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-74feaaf3b47784143acff8364b7a851767824d8298e55947a45666dc55a480bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Analytical chemistry</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General, instrumentation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TELLINGHUISEN, Joel</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Fresenius' journal of analytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TELLINGHUISEN, Joel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse vs. classical calibration for small data sets</atitle><jtitle>Fresenius' journal of analytical chemistry</jtitle><addtitle>Fresenius J Anal Chem</addtitle><date>2000-11-01</date><risdate>2000</risdate><volume>368</volume><issue>6</issue><spage>585</spage><epage>588</epage><pages>585-588</pages><issn>0937-0633</issn><eissn>1432-1130</eissn><abstract>In classical calibration, the statistically uncertain variable y is regressed on the error-free variable x for a number of known samples, and the results are used to estimate the x value (x0) for an unknown sample from its measured y value (y0). It has long been known that inverse calibration--regression of x on y for the same data--is more efficient in its prediction of x0 from y0 than the seemingly more appropriate classical procedure, over large ranges of the controlled variable x. In the present work, theoretical expressions and Monte Carlo calculations are used to illustrate that the comparison favors the inverse procedure even more for small calibration data sets than for the large sets that have been emphasized in previous studies.</abstract><cop>Berlin</cop><pub>Springer</pub><pmid>11228707</pmid><doi>10.1007/s002160000556</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0937-0633
ispartof Fresenius' journal of analytical chemistry, 2000-11, Vol.368 (6), p.585-588
issn 0937-0633
1432-1130
language eng
recordid cdi_proquest_miscellaneous_72567382
source SpringerLink Journals - AutoHoldings
subjects Analytical chemistry
Chemistry
Exact sciences and technology
General, instrumentation
title Inverse vs. classical calibration for small data sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20vs.%20classical%20calibration%20for%20small%20data%20sets&rft.jtitle=Fresenius'%20journal%20of%20analytical%20chemistry&rft.au=TELLINGHUISEN,%20Joel&rft.date=2000-11-01&rft.volume=368&rft.issue=6&rft.spage=585&rft.epage=588&rft.pages=585-588&rft.issn=0937-0633&rft.eissn=1432-1130&rft_id=info:doi/10.1007/s002160000556&rft_dat=%3Cproquest_cross%3E72567382%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72567382&rft_id=info:pmid/11228707&rfr_iscdi=true