Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth

It has been observed that deep-foraging marine mammals have visual pigments that are blue shifted in terms of their wavelength of maximal absorbance (λmax) when compared to analogous pigments from terrestrial mammals. The mechanisms underlying the spectral tuning of two of these blue-shifted pigment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Visual neuroscience 2000-09, Vol.17 (5), p.781-788
Hauptverfasser: FASICK, JEFFRY I., ROBINSON, PHYLLIS R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 788
container_issue 5
container_start_page 781
container_title Visual neuroscience
container_volume 17
creator FASICK, JEFFRY I.
ROBINSON, PHYLLIS R.
description It has been observed that deep-foraging marine mammals have visual pigments that are blue shifted in terms of their wavelength of maximal absorbance (λmax) when compared to analogous pigments from terrestrial mammals. The mechanisms underlying the spectral tuning of two of these blue-shifted pigments have recently been elucidated and depend on three amino acid substitutions (83Asn, 292Ser, and 299Ser) in dolphin rhodopsin, but only one amino acid substitution (308Ser) in the dolphin long-wavelength-sensitive pigment. The objective of this study was to investigate the molecular basis for changes in the spectral sensitivity of rod visual pigments from seven distantly related marine mammals. The results show a relationship between blue-shifted rhodopsins (λmax ≤ 490 nm), deep-diving foraging behavior, and the substitutions 83Asn and 292Ser. Species that forage primarily near the surface in coastal habitats have a rhodopsin with a λmax similar to that of terrestrial mammals (500 nm) and possess the substitutions 83Asp and 292Ala, identical to rhodopsins from terrestrial mammals.
doi_str_mv 10.1017/S095252380017511X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72529299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S095252380017511X</cupid><sourcerecordid>72529299</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-d07c213fdf5e58b0929440880533e4c7a1f1ac554d9b24a82c2f482d8ac27fa03</originalsourceid><addsrcrecordid>eNp9kM1rFTEUxYNY7LP6B7iRAaG7sfmczCyl-KpYUKmK6CLcl4_3UmeSMZmh-t-b4Q11Ibg6JOd3D_cehJ4R_JJgIi9ucCeooKzF5SUI-foAbQhvurqVhD9Em8WuF_8UPc75tlCMCPYInRJStBFyg77fjFZPCfp6moMP-2qw-gDB5yFX0VUDJB9skWGAvkqHaOKYfcgVBFPpmJLtYfKxfNz56VC5mGC_pBg7Tocn6MRBn-3TVc_Q5-3rT5dv6uv3V28vX13XmmM51QZLTQlzxgkr2h3uaMc5blssGLNcSyCOgBaCm25HObRUU8dbalrQVDrA7AydH3PHFH_ONk9q8Fnbvodg45yVLB2V0K6A5AjqFHNO1qkx-XLib0WwWhpV_zRaZp6v4fNusObvxFphAV6sAGQNvUsQtM_3XCdJIxeqPlI-T_bXvQvph2okk0I1Vx8Vxdvth3dfvileeLauCsMuebO36jbOKZQe_7PsH2uOnMo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72529299</pqid></control><display><type>article</type><title>Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth</title><source>MEDLINE</source><source>Cambridge Journals</source><creator>FASICK, JEFFRY I. ; ROBINSON, PHYLLIS R.</creator><creatorcontrib>FASICK, JEFFRY I. ; ROBINSON, PHYLLIS R.</creatorcontrib><description>It has been observed that deep-foraging marine mammals have visual pigments that are blue shifted in terms of their wavelength of maximal absorbance (λmax) when compared to analogous pigments from terrestrial mammals. The mechanisms underlying the spectral tuning of two of these blue-shifted pigments have recently been elucidated and depend on three amino acid substitutions (83Asn, 292Ser, and 299Ser) in dolphin rhodopsin, but only one amino acid substitution (308Ser) in the dolphin long-wavelength-sensitive pigment. The objective of this study was to investigate the molecular basis for changes in the spectral sensitivity of rod visual pigments from seven distantly related marine mammals. The results show a relationship between blue-shifted rhodopsins (λmax ≤ 490 nm), deep-diving foraging behavior, and the substitutions 83Asn and 292Ser. Species that forage primarily near the surface in coastal habitats have a rhodopsin with a λmax similar to that of terrestrial mammals (500 nm) and possess the substitutions 83Asp and 292Ala, identical to rhodopsins from terrestrial mammals.</description><identifier>ISSN: 0952-5238</identifier><identifier>EISSN: 1469-8714</identifier><identifier>DOI: 10.1017/S095252380017511X</identifier><identifier>PMID: 11153657</identifier><language>eng</language><publisher>New York, NY: Cambridge University Press</publisher><subject>Animals ; Biological and medical sciences ; Cetacea - anatomy &amp; histology ; Cetacea - metabolism ; Diving - physiology ; DNA Mutational Analysis - methods ; DNA, Complementary - chemistry ; DNA, Complementary - genetics ; Eye and associated structures. Visual pathways and centers. Vision ; Feeding Behavior - physiology ; Fundamental and applied biological sciences. Psychology ; Marine mammal ; Molecular Sequence Data ; Mutagenesis ; Mutation - physiology ; Neural network ; Retinal Rod Photoreceptor Cells - cytology ; Retinal Rod Photoreceptor Cells - metabolism ; Rhodopsin ; Rhodopsin - genetics ; Rhodopsin - metabolism ; Seals, Earless - anatomy &amp; histology ; Seals, Earless - metabolism ; Sequence Homology, Amino Acid ; Spectral tuning ; Trichechus manatus - anatomy &amp; histology ; Trichechus manatus - metabolism ; Vertebrates: nervous system and sense organs ; Vision, Ocular - physiology</subject><ispartof>Visual neuroscience, 2000-09, Vol.17 (5), p.781-788</ispartof><rights>2000 Cambridge University Press</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-d07c213fdf5e58b0929440880533e4c7a1f1ac554d9b24a82c2f482d8ac27fa03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S095252380017511X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=971677$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11153657$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FASICK, JEFFRY I.</creatorcontrib><creatorcontrib>ROBINSON, PHYLLIS R.</creatorcontrib><title>Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth</title><title>Visual neuroscience</title><addtitle>Vis Neurosci</addtitle><description>It has been observed that deep-foraging marine mammals have visual pigments that are blue shifted in terms of their wavelength of maximal absorbance (λmax) when compared to analogous pigments from terrestrial mammals. The mechanisms underlying the spectral tuning of two of these blue-shifted pigments have recently been elucidated and depend on three amino acid substitutions (83Asn, 292Ser, and 299Ser) in dolphin rhodopsin, but only one amino acid substitution (308Ser) in the dolphin long-wavelength-sensitive pigment. The objective of this study was to investigate the molecular basis for changes in the spectral sensitivity of rod visual pigments from seven distantly related marine mammals. The results show a relationship between blue-shifted rhodopsins (λmax ≤ 490 nm), deep-diving foraging behavior, and the substitutions 83Asn and 292Ser. Species that forage primarily near the surface in coastal habitats have a rhodopsin with a λmax similar to that of terrestrial mammals (500 nm) and possess the substitutions 83Asp and 292Ala, identical to rhodopsins from terrestrial mammals.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cetacea - anatomy &amp; histology</subject><subject>Cetacea - metabolism</subject><subject>Diving - physiology</subject><subject>DNA Mutational Analysis - methods</subject><subject>DNA, Complementary - chemistry</subject><subject>DNA, Complementary - genetics</subject><subject>Eye and associated structures. Visual pathways and centers. Vision</subject><subject>Feeding Behavior - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Marine mammal</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Mutation - physiology</subject><subject>Neural network</subject><subject>Retinal Rod Photoreceptor Cells - cytology</subject><subject>Retinal Rod Photoreceptor Cells - metabolism</subject><subject>Rhodopsin</subject><subject>Rhodopsin - genetics</subject><subject>Rhodopsin - metabolism</subject><subject>Seals, Earless - anatomy &amp; histology</subject><subject>Seals, Earless - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Spectral tuning</subject><subject>Trichechus manatus - anatomy &amp; histology</subject><subject>Trichechus manatus - metabolism</subject><subject>Vertebrates: nervous system and sense organs</subject><subject>Vision, Ocular - physiology</subject><issn>0952-5238</issn><issn>1469-8714</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kM1rFTEUxYNY7LP6B7iRAaG7sfmczCyl-KpYUKmK6CLcl4_3UmeSMZmh-t-b4Q11Ibg6JOd3D_cehJ4R_JJgIi9ucCeooKzF5SUI-foAbQhvurqVhD9Em8WuF_8UPc75tlCMCPYInRJStBFyg77fjFZPCfp6moMP-2qw-gDB5yFX0VUDJB9skWGAvkqHaOKYfcgVBFPpmJLtYfKxfNz56VC5mGC_pBg7Tocn6MRBn-3TVc_Q5-3rT5dv6uv3V28vX13XmmM51QZLTQlzxgkr2h3uaMc5blssGLNcSyCOgBaCm25HObRUU8dbalrQVDrA7AydH3PHFH_ONk9q8Fnbvodg45yVLB2V0K6A5AjqFHNO1qkx-XLib0WwWhpV_zRaZp6v4fNusObvxFphAV6sAGQNvUsQtM_3XCdJIxeqPlI-T_bXvQvph2okk0I1Vx8Vxdvth3dfvileeLauCsMuebO36jbOKZQe_7PsH2uOnMo</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>FASICK, JEFFRY I.</creator><creator>ROBINSON, PHYLLIS R.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000901</creationdate><title>Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth</title><author>FASICK, JEFFRY I. ; ROBINSON, PHYLLIS R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-d07c213fdf5e58b0929440880533e4c7a1f1ac554d9b24a82c2f482d8ac27fa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cetacea - anatomy &amp; histology</topic><topic>Cetacea - metabolism</topic><topic>Diving - physiology</topic><topic>DNA Mutational Analysis - methods</topic><topic>DNA, Complementary - chemistry</topic><topic>DNA, Complementary - genetics</topic><topic>Eye and associated structures. Visual pathways and centers. Vision</topic><topic>Feeding Behavior - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Marine mammal</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Mutation - physiology</topic><topic>Neural network</topic><topic>Retinal Rod Photoreceptor Cells - cytology</topic><topic>Retinal Rod Photoreceptor Cells - metabolism</topic><topic>Rhodopsin</topic><topic>Rhodopsin - genetics</topic><topic>Rhodopsin - metabolism</topic><topic>Seals, Earless - anatomy &amp; histology</topic><topic>Seals, Earless - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Spectral tuning</topic><topic>Trichechus manatus - anatomy &amp; histology</topic><topic>Trichechus manatus - metabolism</topic><topic>Vertebrates: nervous system and sense organs</topic><topic>Vision, Ocular - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FASICK, JEFFRY I.</creatorcontrib><creatorcontrib>ROBINSON, PHYLLIS R.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Visual neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FASICK, JEFFRY I.</au><au>ROBINSON, PHYLLIS R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth</atitle><jtitle>Visual neuroscience</jtitle><addtitle>Vis Neurosci</addtitle><date>2000-09-01</date><risdate>2000</risdate><volume>17</volume><issue>5</issue><spage>781</spage><epage>788</epage><pages>781-788</pages><issn>0952-5238</issn><eissn>1469-8714</eissn><abstract>It has been observed that deep-foraging marine mammals have visual pigments that are blue shifted in terms of their wavelength of maximal absorbance (λmax) when compared to analogous pigments from terrestrial mammals. The mechanisms underlying the spectral tuning of two of these blue-shifted pigments have recently been elucidated and depend on three amino acid substitutions (83Asn, 292Ser, and 299Ser) in dolphin rhodopsin, but only one amino acid substitution (308Ser) in the dolphin long-wavelength-sensitive pigment. The objective of this study was to investigate the molecular basis for changes in the spectral sensitivity of rod visual pigments from seven distantly related marine mammals. The results show a relationship between blue-shifted rhodopsins (λmax ≤ 490 nm), deep-diving foraging behavior, and the substitutions 83Asn and 292Ser. Species that forage primarily near the surface in coastal habitats have a rhodopsin with a λmax similar to that of terrestrial mammals (500 nm) and possess the substitutions 83Asp and 292Ala, identical to rhodopsins from terrestrial mammals.</abstract><cop>New York, NY</cop><pub>Cambridge University Press</pub><pmid>11153657</pmid><doi>10.1017/S095252380017511X</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0952-5238
ispartof Visual neuroscience, 2000-09, Vol.17 (5), p.781-788
issn 0952-5238
1469-8714
language eng
recordid cdi_proquest_miscellaneous_72529299
source MEDLINE; Cambridge Journals
subjects Animals
Biological and medical sciences
Cetacea - anatomy & histology
Cetacea - metabolism
Diving - physiology
DNA Mutational Analysis - methods
DNA, Complementary - chemistry
DNA, Complementary - genetics
Eye and associated structures. Visual pathways and centers. Vision
Feeding Behavior - physiology
Fundamental and applied biological sciences. Psychology
Marine mammal
Molecular Sequence Data
Mutagenesis
Mutation - physiology
Neural network
Retinal Rod Photoreceptor Cells - cytology
Retinal Rod Photoreceptor Cells - metabolism
Rhodopsin
Rhodopsin - genetics
Rhodopsin - metabolism
Seals, Earless - anatomy & histology
Seals, Earless - metabolism
Sequence Homology, Amino Acid
Spectral tuning
Trichechus manatus - anatomy & histology
Trichechus manatus - metabolism
Vertebrates: nervous system and sense organs
Vision, Ocular - physiology
title Spectral-tuning mechanisms of marine mammal rhodopsins and correlations with foraging depth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral-tuning%20mechanisms%20of%20marine%20mammal%20rhodopsins%20and%20correlations%20with%20foraging%20depth&rft.jtitle=Visual%20neuroscience&rft.au=FASICK,%20JEFFRY%20I.&rft.date=2000-09-01&rft.volume=17&rft.issue=5&rft.spage=781&rft.epage=788&rft.pages=781-788&rft.issn=0952-5238&rft.eissn=1469-8714&rft_id=info:doi/10.1017/S095252380017511X&rft_dat=%3Cproquest_cross%3E72529299%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72529299&rft_id=info:pmid/11153657&rft_cupid=10_1017_S095252380017511X&rfr_iscdi=true