Development of a neural network heating controller for solar buildings
Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controlle...
Gespeichert in:
Veröffentlicht in: | Neural networks 2000-09, Vol.13 (7), p.811-820 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | 7 |
container_start_page | 811 |
container_title | Neural networks |
container_volume | 13 |
creator | Argiriou, A.A Bellas-Velidis, I Balaras, C.A |
description | Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings while maintaining thermal comfort. In this paper, such an ANN controller is proposed. It consists of a meteorological module, forecasting the ambient temperature and solar irradiance, the heating energy switch predictor module and the indoor temperature-defining module. The performance of the controller has been tested both experimentally and in a building thermal simulation environment. The results showed that the use of the proposed controller can lead to 7.5% annual energy savings in the case of a highly insulated passive solar test cell. |
doi_str_mv | 10.1016/S0893-6080(00)00057-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72528612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608000000575</els_id><sourcerecordid>72528612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-acd14e1e2b4b96b841d4638e4f60420d71c5e7b687eb6d5781a59c7a752f72183</originalsourceid><addsrcrecordid>eNqFkE1rFEEQhpugmDX6ExIGBNHDaFVvf81JJBoVAjmYnJuenhrt2Du9ds9E8u_tdZd4DBTUoZ6qenkYO0V4h4Dq_Xcw3bpVYOANwFsAkLqVR2yFRnct14Y_YasH5Jg9L-W2QsqI9TN2jIiSc8QVu_hEdxTTdkPT3KSxcc1ES3axtvlPyr-an-TmMP1ofJrmnGKk3IwpNyVFl5t-CXGo0_KCPR1dLPTy0E_YzcXn6_Ov7eXVl2_nHy9bL0Q3t84PKAiJ96LvVG8EDkKtDYlRgeAwaPSSdK-Mpl4NUht0svPaaclHzdGsT9jr_d1tTr8XKrPdhOIpRjdRWorVXHKjkD8Kci06UNBVUO5Bn1MpmUa7zWHj8r1FsDvT9p9pu9NoYVfVtJV17-zwYOk3NPzfOqitwKsD4Ip3ccxu8qE8cKbmFFCpD3uKqrW7QNkWH2jyNIRMfrZDCo8E-QsJR5k8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27490609</pqid></control><display><type>article</type><title>Development of a neural network heating controller for solar buildings</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Argiriou, A.A ; Bellas-Velidis, I ; Balaras, C.A</creator><creatorcontrib>Argiriou, A.A ; Bellas-Velidis, I ; Balaras, C.A</creatorcontrib><description>Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings while maintaining thermal comfort. In this paper, such an ANN controller is proposed. It consists of a meteorological module, forecasting the ambient temperature and solar irradiance, the heating energy switch predictor module and the indoor temperature-defining module. The performance of the controller has been tested both experimentally and in a building thermal simulation environment. The results showed that the use of the proposed controller can lead to 7.5% annual energy savings in the case of a highly insulated passive solar test cell.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(00)00057-5</identifier><identifier>PMID: 11152211</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ambient temperature forecasting ; Applied sciences ; Artificial neural networks ; Building technical equipments ; Buildings ; Buildings. Public works ; Electric, optical and optoelectronic circuits ; Electronics ; Energy ; Energy management ; Energy management and energy conservation in building ; Environmental engineering ; Equipment Design ; Exact sciences and technology ; Feed forward back propagation ; Heating - instrumentation ; Heating system control ; Housing ; Miscellaneous ; Natural energy ; Neural controllers ; Neural networks ; Neural Networks (Computer) ; Solar buildings ; Solar Energy ; Solar irradiance forecasting</subject><ispartof>Neural networks, 2000-09, Vol.13 (7), p.811-820</ispartof><rights>2000 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-acd14e1e2b4b96b841d4638e4f60420d71c5e7b687eb6d5781a59c7a752f72183</citedby><cites>FETCH-LOGICAL-c449t-acd14e1e2b4b96b841d4638e4f60420d71c5e7b687eb6d5781a59c7a752f72183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0893-6080(00)00057-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=828640$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11152211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Argiriou, A.A</creatorcontrib><creatorcontrib>Bellas-Velidis, I</creatorcontrib><creatorcontrib>Balaras, C.A</creatorcontrib><title>Development of a neural network heating controller for solar buildings</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings while maintaining thermal comfort. In this paper, such an ANN controller is proposed. It consists of a meteorological module, forecasting the ambient temperature and solar irradiance, the heating energy switch predictor module and the indoor temperature-defining module. The performance of the controller has been tested both experimentally and in a building thermal simulation environment. The results showed that the use of the proposed controller can lead to 7.5% annual energy savings in the case of a highly insulated passive solar test cell.</description><subject>Ambient temperature forecasting</subject><subject>Applied sciences</subject><subject>Artificial neural networks</subject><subject>Building technical equipments</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Energy</subject><subject>Energy management</subject><subject>Energy management and energy conservation in building</subject><subject>Environmental engineering</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Feed forward back propagation</subject><subject>Heating - instrumentation</subject><subject>Heating system control</subject><subject>Housing</subject><subject>Miscellaneous</subject><subject>Natural energy</subject><subject>Neural controllers</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Solar buildings</subject><subject>Solar Energy</subject><subject>Solar irradiance forecasting</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1rFEEQhpugmDX6ExIGBNHDaFVvf81JJBoVAjmYnJuenhrt2Du9ds9E8u_tdZd4DBTUoZ6qenkYO0V4h4Dq_Xcw3bpVYOANwFsAkLqVR2yFRnct14Y_YasH5Jg9L-W2QsqI9TN2jIiSc8QVu_hEdxTTdkPT3KSxcc1ES3axtvlPyr-an-TmMP1ofJrmnGKk3IwpNyVFl5t-CXGo0_KCPR1dLPTy0E_YzcXn6_Ov7eXVl2_nHy9bL0Q3t84PKAiJ96LvVG8EDkKtDYlRgeAwaPSSdK-Mpl4NUht0svPaaclHzdGsT9jr_d1tTr8XKrPdhOIpRjdRWorVXHKjkD8Kci06UNBVUO5Bn1MpmUa7zWHj8r1FsDvT9p9pu9NoYVfVtJV17-zwYOk3NPzfOqitwKsD4Ip3ccxu8qE8cKbmFFCpD3uKqrW7QNkWH2jyNIRMfrZDCo8E-QsJR5k8</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Argiriou, A.A</creator><creator>Bellas-Velidis, I</creator><creator>Balaras, C.A</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20000901</creationdate><title>Development of a neural network heating controller for solar buildings</title><author>Argiriou, A.A ; Bellas-Velidis, I ; Balaras, C.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-acd14e1e2b4b96b841d4638e4f60420d71c5e7b687eb6d5781a59c7a752f72183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Ambient temperature forecasting</topic><topic>Applied sciences</topic><topic>Artificial neural networks</topic><topic>Building technical equipments</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Energy</topic><topic>Energy management</topic><topic>Energy management and energy conservation in building</topic><topic>Environmental engineering</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Feed forward back propagation</topic><topic>Heating - instrumentation</topic><topic>Heating system control</topic><topic>Housing</topic><topic>Miscellaneous</topic><topic>Natural energy</topic><topic>Neural controllers</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Solar buildings</topic><topic>Solar Energy</topic><topic>Solar irradiance forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Argiriou, A.A</creatorcontrib><creatorcontrib>Bellas-Velidis, I</creatorcontrib><creatorcontrib>Balaras, C.A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Argiriou, A.A</au><au>Bellas-Velidis, I</au><au>Balaras, C.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a neural network heating controller for solar buildings</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2000-09-01</date><risdate>2000</risdate><volume>13</volume><issue>7</issue><spage>811</spage><epage>820</epage><pages>811-820</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings while maintaining thermal comfort. In this paper, such an ANN controller is proposed. It consists of a meteorological module, forecasting the ambient temperature and solar irradiance, the heating energy switch predictor module and the indoor temperature-defining module. The performance of the controller has been tested both experimentally and in a building thermal simulation environment. The results showed that the use of the proposed controller can lead to 7.5% annual energy savings in the case of a highly insulated passive solar test cell.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11152211</pmid><doi>10.1016/S0893-6080(00)00057-5</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2000-09, Vol.13 (7), p.811-820 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_72528612 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Ambient temperature forecasting Applied sciences Artificial neural networks Building technical equipments Buildings Buildings. Public works Electric, optical and optoelectronic circuits Electronics Energy Energy management Energy management and energy conservation in building Environmental engineering Equipment Design Exact sciences and technology Feed forward back propagation Heating - instrumentation Heating system control Housing Miscellaneous Natural energy Neural controllers Neural networks Neural Networks (Computer) Solar buildings Solar Energy Solar irradiance forecasting |
title | Development of a neural network heating controller for solar buildings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20neural%20network%20heating%20controller%20for%20solar%20buildings&rft.jtitle=Neural%20networks&rft.au=Argiriou,%20A.A&rft.date=2000-09-01&rft.volume=13&rft.issue=7&rft.spage=811&rft.epage=820&rft.pages=811-820&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(00)00057-5&rft_dat=%3Cproquest_cross%3E72528612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27490609&rft_id=info:pmid/11152211&rft_els_id=S0893608000000575&rfr_iscdi=true |