Development of a neural network heating controller for solar buildings

Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controlle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2000-09, Vol.13 (7), p.811-820
Hauptverfasser: Argiriou, A.A, Bellas-Velidis, I, Balaras, C.A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 820
container_issue 7
container_start_page 811
container_title Neural networks
container_volume 13
creator Argiriou, A.A
Bellas-Velidis, I
Balaras, C.A
description Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings while maintaining thermal comfort. In this paper, such an ANN controller is proposed. It consists of a meteorological module, forecasting the ambient temperature and solar irradiance, the heating energy switch predictor module and the indoor temperature-defining module. The performance of the controller has been tested both experimentally and in a building thermal simulation environment. The results showed that the use of the proposed controller can lead to 7.5% annual energy savings in the case of a highly insulated passive solar test cell.
doi_str_mv 10.1016/S0893-6080(00)00057-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72528612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608000000575</els_id><sourcerecordid>72528612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-acd14e1e2b4b96b841d4638e4f60420d71c5e7b687eb6d5781a59c7a752f72183</originalsourceid><addsrcrecordid>eNqFkE1rFEEQhpugmDX6ExIGBNHDaFVvf81JJBoVAjmYnJuenhrt2Du9ds9E8u_tdZd4DBTUoZ6qenkYO0V4h4Dq_Xcw3bpVYOANwFsAkLqVR2yFRnct14Y_YasH5Jg9L-W2QsqI9TN2jIiSc8QVu_hEdxTTdkPT3KSxcc1ES3axtvlPyr-an-TmMP1ofJrmnGKk3IwpNyVFl5t-CXGo0_KCPR1dLPTy0E_YzcXn6_Ov7eXVl2_nHy9bL0Q3t84PKAiJ96LvVG8EDkKtDYlRgeAwaPSSdK-Mpl4NUht0svPaaclHzdGsT9jr_d1tTr8XKrPdhOIpRjdRWorVXHKjkD8Kci06UNBVUO5Bn1MpmUa7zWHj8r1FsDvT9p9pu9NoYVfVtJV17-zwYOk3NPzfOqitwKsD4Ip3ccxu8qE8cKbmFFCpD3uKqrW7QNkWH2jyNIRMfrZDCo8E-QsJR5k8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27490609</pqid></control><display><type>article</type><title>Development of a neural network heating controller for solar buildings</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Argiriou, A.A ; Bellas-Velidis, I ; Balaras, C.A</creator><creatorcontrib>Argiriou, A.A ; Bellas-Velidis, I ; Balaras, C.A</creatorcontrib><description>Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings while maintaining thermal comfort. In this paper, such an ANN controller is proposed. It consists of a meteorological module, forecasting the ambient temperature and solar irradiance, the heating energy switch predictor module and the indoor temperature-defining module. The performance of the controller has been tested both experimentally and in a building thermal simulation environment. The results showed that the use of the proposed controller can lead to 7.5% annual energy savings in the case of a highly insulated passive solar test cell.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(00)00057-5</identifier><identifier>PMID: 11152211</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Ambient temperature forecasting ; Applied sciences ; Artificial neural networks ; Building technical equipments ; Buildings ; Buildings. Public works ; Electric, optical and optoelectronic circuits ; Electronics ; Energy ; Energy management ; Energy management and energy conservation in building ; Environmental engineering ; Equipment Design ; Exact sciences and technology ; Feed forward back propagation ; Heating - instrumentation ; Heating system control ; Housing ; Miscellaneous ; Natural energy ; Neural controllers ; Neural networks ; Neural Networks (Computer) ; Solar buildings ; Solar Energy ; Solar irradiance forecasting</subject><ispartof>Neural networks, 2000-09, Vol.13 (7), p.811-820</ispartof><rights>2000 Elsevier Science Ltd</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-acd14e1e2b4b96b841d4638e4f60420d71c5e7b687eb6d5781a59c7a752f72183</citedby><cites>FETCH-LOGICAL-c449t-acd14e1e2b4b96b841d4638e4f60420d71c5e7b687eb6d5781a59c7a752f72183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0893-6080(00)00057-5$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=828640$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11152211$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Argiriou, A.A</creatorcontrib><creatorcontrib>Bellas-Velidis, I</creatorcontrib><creatorcontrib>Balaras, C.A</creatorcontrib><title>Development of a neural network heating controller for solar buildings</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings while maintaining thermal comfort. In this paper, such an ANN controller is proposed. It consists of a meteorological module, forecasting the ambient temperature and solar irradiance, the heating energy switch predictor module and the indoor temperature-defining module. The performance of the controller has been tested both experimentally and in a building thermal simulation environment. The results showed that the use of the proposed controller can lead to 7.5% annual energy savings in the case of a highly insulated passive solar test cell.</description><subject>Ambient temperature forecasting</subject><subject>Applied sciences</subject><subject>Artificial neural networks</subject><subject>Building technical equipments</subject><subject>Buildings</subject><subject>Buildings. Public works</subject><subject>Electric, optical and optoelectronic circuits</subject><subject>Electronics</subject><subject>Energy</subject><subject>Energy management</subject><subject>Energy management and energy conservation in building</subject><subject>Environmental engineering</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Feed forward back propagation</subject><subject>Heating - instrumentation</subject><subject>Heating system control</subject><subject>Housing</subject><subject>Miscellaneous</subject><subject>Natural energy</subject><subject>Neural controllers</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Solar buildings</subject><subject>Solar Energy</subject><subject>Solar irradiance forecasting</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1rFEEQhpugmDX6ExIGBNHDaFVvf81JJBoVAjmYnJuenhrt2Du9ds9E8u_tdZd4DBTUoZ6qenkYO0V4h4Dq_Xcw3bpVYOANwFsAkLqVR2yFRnct14Y_YasH5Jg9L-W2QsqI9TN2jIiSc8QVu_hEdxTTdkPT3KSxcc1ES3axtvlPyr-an-TmMP1ofJrmnGKk3IwpNyVFl5t-CXGo0_KCPR1dLPTy0E_YzcXn6_Ov7eXVl2_nHy9bL0Q3t84PKAiJ96LvVG8EDkKtDYlRgeAwaPSSdK-Mpl4NUht0svPaaclHzdGsT9jr_d1tTr8XKrPdhOIpRjdRWorVXHKjkD8Kci06UNBVUO5Bn1MpmUa7zWHj8r1FsDvT9p9pu9NoYVfVtJV17-zwYOk3NPzfOqitwKsD4Ip3ccxu8qE8cKbmFFCpD3uKqrW7QNkWH2jyNIRMfrZDCo8E-QsJR5k8</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Argiriou, A.A</creator><creator>Bellas-Velidis, I</creator><creator>Balaras, C.A</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20000901</creationdate><title>Development of a neural network heating controller for solar buildings</title><author>Argiriou, A.A ; Bellas-Velidis, I ; Balaras, C.A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-acd14e1e2b4b96b841d4638e4f60420d71c5e7b687eb6d5781a59c7a752f72183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Ambient temperature forecasting</topic><topic>Applied sciences</topic><topic>Artificial neural networks</topic><topic>Building technical equipments</topic><topic>Buildings</topic><topic>Buildings. Public works</topic><topic>Electric, optical and optoelectronic circuits</topic><topic>Electronics</topic><topic>Energy</topic><topic>Energy management</topic><topic>Energy management and energy conservation in building</topic><topic>Environmental engineering</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Feed forward back propagation</topic><topic>Heating - instrumentation</topic><topic>Heating system control</topic><topic>Housing</topic><topic>Miscellaneous</topic><topic>Natural energy</topic><topic>Neural controllers</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Solar buildings</topic><topic>Solar Energy</topic><topic>Solar irradiance forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Argiriou, A.A</creatorcontrib><creatorcontrib>Bellas-Velidis, I</creatorcontrib><creatorcontrib>Balaras, C.A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Argiriou, A.A</au><au>Bellas-Velidis, I</au><au>Balaras, C.A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a neural network heating controller for solar buildings</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2000-09-01</date><risdate>2000</risdate><volume>13</volume><issue>7</issue><spage>811</spage><epage>820</epage><pages>811-820</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>Artificial neural networks (ANN's) are more and more widely used in energy management processes. ANN's can be very useful in optimizing the energy demand of buildings, especially of those of high thermal inertia. These include the so-called solar buildings. For those buildings, a controller able to forecast not only the energy demand but also the weather conditions can lead to energy savings while maintaining thermal comfort. In this paper, such an ANN controller is proposed. It consists of a meteorological module, forecasting the ambient temperature and solar irradiance, the heating energy switch predictor module and the indoor temperature-defining module. The performance of the controller has been tested both experimentally and in a building thermal simulation environment. The results showed that the use of the proposed controller can lead to 7.5% annual energy savings in the case of a highly insulated passive solar test cell.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11152211</pmid><doi>10.1016/S0893-6080(00)00057-5</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2000-09, Vol.13 (7), p.811-820
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_72528612
source MEDLINE; Elsevier ScienceDirect Journals
subjects Ambient temperature forecasting
Applied sciences
Artificial neural networks
Building technical equipments
Buildings
Buildings. Public works
Electric, optical and optoelectronic circuits
Electronics
Energy
Energy management
Energy management and energy conservation in building
Environmental engineering
Equipment Design
Exact sciences and technology
Feed forward back propagation
Heating - instrumentation
Heating system control
Housing
Miscellaneous
Natural energy
Neural controllers
Neural networks
Neural Networks (Computer)
Solar buildings
Solar Energy
Solar irradiance forecasting
title Development of a neural network heating controller for solar buildings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T19%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20neural%20network%20heating%20controller%20for%20solar%20buildings&rft.jtitle=Neural%20networks&rft.au=Argiriou,%20A.A&rft.date=2000-09-01&rft.volume=13&rft.issue=7&rft.spage=811&rft.epage=820&rft.pages=811-820&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(00)00057-5&rft_dat=%3Cproquest_cross%3E72528612%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=27490609&rft_id=info:pmid/11152211&rft_els_id=S0893608000000575&rfr_iscdi=true