A CD2-based model of yeast alpha-agglutinin elucidates solution properties and binding characteristics

We have previously shown that the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin has sequence characteristics of immunoglobulin-like proteins and have successfully modeled residues 200-325, based on the structure of immunoglobulin variable-type domains. Alignments matching residues...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IUBMB life 2000-08, Vol.50 (2), p.105-113
Hauptverfasser: Grigorescu, A, Chen, M H, Zhao, H, Kahn, P C, Lipke, P N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have previously shown that the Saccharomyces cerevisiae cell adhesion protein alpha-agglutinin has sequence characteristics of immunoglobulin-like proteins and have successfully modeled residues 200-325, based on the structure of immunoglobulin variable-type domains. Alignments matching residues 20-200 of alpha-agglutinin with domains I and II of members of the CD2/CD4 subfamily of the immunoglobulin superfamily showed > 80% conservation of key residues despite low sequence similarity overall. Three-dimensional models of two alpha-agglutinin domains constructed on the basis of these alignments were shown to conform to peptide mapping data and biophysical properties of alpha-agglutinin. In addition, the residue volume and surface accessibility characteristics of these models resembled those of the well-packed structures of related proteins. Residue-by-residue analysis showed that packing and accessibility anomalies were largely confined to glycosylated and protease-susceptible loop regions of the domains. Surface accessibility of hydrophobic residues was typical of proteins with extensive domain interactions, a finding compatible with the hydrodynamic properties of alpha -agglutinin and the hydrophobic nature of binding to its peptide ligand alpha-agglutinin. The procedures used to align the alpha-agglutinin sequence and test the quality of the model may be applicable to other proteins, especially those that resist crystallization because of extensive glycosylation.
ISSN:1521-6543
1521-6551
DOI:10.1080/15216540050212114