Oxygen-independent poly(dimethylsiloxane)-based carbon-paste glucose biosensors
Several silicone oils have been assessed and compared as an internal source of oxygen in connection to their use as binders for carbon-paste glucose biosensors. All four poly(dimethylsiloxane) (PDMS) oils tested a dramatic increase in the oxygen capacity of carbon-paste enzyme electrodes to allow co...
Gespeichert in:
Veröffentlicht in: | Biosensors & bioelectronics 2002-12, Vol.17 (11), p.999-1003 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several silicone oils have been assessed and compared as an internal source of oxygen in connection to their use as binders for carbon-paste glucose biosensors. All four poly(dimethylsiloxane) (PDMS) oils tested a dramatic increase in the oxygen capacity of carbon-paste enzyme electrodes to allow convenient biosensing under severe oxygen-deficit conditions. The resulting oxygen independence is better than that exerted by perfluorocarbon binders or that displayed by mediator-based bioelectrodes. The resistance to oxygen effects is indicated from the identical response (observed in the presence and absence of oxygen) up to 2×10
−2 M glucose and the slight (12%) sensitivity loss at 4×10
−2 M. The influence of the viscosity of the PDMS binder upon the internal oxygen supply is examined. The PDMS carbon-paste enzyme electrode displays a stable glucose response over prolonged (15 h) operation in an oxygen-free solution. On-line continuous testing indicates favorable dynamic properties with no carry-over effects over the physiological and pathophysiological range (3–12 mM glucose). |
---|---|
ISSN: | 0956-5663 1873-4235 |
DOI: | 10.1016/S0956-5663(02)00092-1 |