Electronics using hybrid-molecular and mono-molecular devices

The semiconductor industry has seen a remarkable miniaturization trend, driven by many scientific and technological innovations. But if this trend is to continue, and provide ever faster and cheaper computers, the size of microelectronic circuit components will soon need to reach the scale of atoms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2000-11, Vol.408 (6812), p.541-548
Hauptverfasser: Gimzewski, J. K, Joachim, C, Aviram, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 548
container_issue 6812
container_start_page 541
container_title Nature (London)
container_volume 408
creator Gimzewski, J. K
Joachim, C
Aviram, A
description The semiconductor industry has seen a remarkable miniaturization trend, driven by many scientific and technological innovations. But if this trend is to continue, and provide ever faster and cheaper computers, the size of microelectronic circuit components will soon need to reach the scale of atoms or molecules--a goal that will require conceptually new device structures. The idea that a few molecules, or even a single molecule, could be embedded between electrodes and perform the basic functions of digital electronics--rectification, amplification and storage--was first put forward in the mid-1970s. The concept is now realized for individual components, but the economic fabrication of complete circuits at the molecular level remains challenging because of the difficulty of connecting molecules to one another. A possible solution to this problem is 'mono-molecular' electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation.
doi_str_mv 10.1038/35046000
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72488414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A188051276</galeid><sourcerecordid>A188051276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-d692f4547636ca4dea5ac0efaff4f729c817f88275f99c0d569e623726f7bc253</originalsourceid><addsrcrecordid>eNqF0ltrFDEUAOAgit1WwV8gi4Low9Tck3nwoZSqhYLg5TlkMydrykyyTWZK--9N2XW3WwpNHgI5X06Sw0HoDcHHBDP9mQnMJcb4GZoRrmTDpVbP0QxjqhusmTxAh6VcViCI4i_RAalDKcZn6MtZD27MKQZX5lMJcTn_e7vIoWuGVCNTb_Pcxm4-pJjubXVwHRyUV-iFt32B15v1CP35evb79Htz8ePb-enJReNES8emky31XNSXMeks78AK6zB46z33irZOE-W1pkr4tnW4E7IFSZmi0quFo4IdoQ_rvKucriYooxlCcdD3NkKailGUa80JfxLWK6SimFT47gG8TFOO9ROGYs4VJUJW1KzR0vZgQvRpzNYtIUK2fYrgQ90-IVrXulIld0n3vFuFK3MfHT-C6uxgCO7RrJ_2DlQzws24tFMp5vzXz337cW1dTqVk8GaVw2DzrSHY3LWK-d8qlb7dVGBaDNDt4KY3Kni_AbY42_tsowtl6zTDjMpdmmjHKcM2vL3nH1_cycQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204472156</pqid></control><display><type>article</type><title>Electronics using hybrid-molecular and mono-molecular devices</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Gimzewski, J. K ; Joachim, C ; Aviram, A</creator><creatorcontrib>Gimzewski, J. K ; Joachim, C ; Aviram, A</creatorcontrib><description>The semiconductor industry has seen a remarkable miniaturization trend, driven by many scientific and technological innovations. But if this trend is to continue, and provide ever faster and cheaper computers, the size of microelectronic circuit components will soon need to reach the scale of atoms or molecules--a goal that will require conceptually new device structures. The idea that a few molecules, or even a single molecule, could be embedded between electrodes and perform the basic functions of digital electronics--rectification, amplification and storage--was first put forward in the mid-1970s. The concept is now realized for individual components, but the economic fabrication of complete circuits at the molecular level remains challenging because of the difficulty of connecting molecules to one another. A possible solution to this problem is 'mono-molecular' electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/35046000</identifier><identifier>PMID: 11117734</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing</publisher><subject>Applied sciences ; Electronics ; Exact sciences and technology ; Fabrication ; Miniaturization ; Molecular electronics, nanoelectronics ; Molecules ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Semiconductors ; Technological change</subject><ispartof>Nature (London), 2000-11, Vol.408 (6812), p.541-548</ispartof><rights>2001 INIST-CNRS</rights><rights>COPYRIGHT 2000 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Nov 30, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-d692f4547636ca4dea5ac0efaff4f729c817f88275f99c0d569e623726f7bc253</citedby><cites>FETCH-LOGICAL-c592t-d692f4547636ca4dea5ac0efaff4f729c817f88275f99c0d569e623726f7bc253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,2731,27933,27934</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=830326$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11117734$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gimzewski, J. K</creatorcontrib><creatorcontrib>Joachim, C</creatorcontrib><creatorcontrib>Aviram, A</creatorcontrib><title>Electronics using hybrid-molecular and mono-molecular devices</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>The semiconductor industry has seen a remarkable miniaturization trend, driven by many scientific and technological innovations. But if this trend is to continue, and provide ever faster and cheaper computers, the size of microelectronic circuit components will soon need to reach the scale of atoms or molecules--a goal that will require conceptually new device structures. The idea that a few molecules, or even a single molecule, could be embedded between electrodes and perform the basic functions of digital electronics--rectification, amplification and storage--was first put forward in the mid-1970s. The concept is now realized for individual components, but the economic fabrication of complete circuits at the molecular level remains challenging because of the difficulty of connecting molecules to one another. A possible solution to this problem is 'mono-molecular' electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation.</description><subject>Applied sciences</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fabrication</subject><subject>Miniaturization</subject><subject>Molecular electronics, nanoelectronics</subject><subject>Molecules</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Semiconductors</subject><subject>Technological change</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0ltrFDEUAOAgit1WwV8gi4Low9Tck3nwoZSqhYLg5TlkMydrykyyTWZK--9N2XW3WwpNHgI5X06Sw0HoDcHHBDP9mQnMJcb4GZoRrmTDpVbP0QxjqhusmTxAh6VcViCI4i_RAalDKcZn6MtZD27MKQZX5lMJcTn_e7vIoWuGVCNTb_Pcxm4-pJjubXVwHRyUV-iFt32B15v1CP35evb79Htz8ePb-enJReNES8emky31XNSXMeks78AK6zB46z33irZOE-W1pkr4tnW4E7IFSZmi0quFo4IdoQ_rvKucriYooxlCcdD3NkKailGUa80JfxLWK6SimFT47gG8TFOO9ROGYs4VJUJW1KzR0vZgQvRpzNYtIUK2fYrgQ90-IVrXulIld0n3vFuFK3MfHT-C6uxgCO7RrJ_2DlQzws24tFMp5vzXz337cW1dTqVk8GaVw2DzrSHY3LWK-d8qlb7dVGBaDNDt4KY3Kni_AbY42_tsowtl6zTDjMpdmmjHKcM2vL3nH1_cycQ</recordid><startdate>20001130</startdate><enddate>20001130</enddate><creator>Gimzewski, J. K</creator><creator>Joachim, C</creator><creator>Aviram, A</creator><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20001130</creationdate><title>Electronics using hybrid-molecular and mono-molecular devices</title><author>Gimzewski, J. K ; Joachim, C ; Aviram, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-d692f4547636ca4dea5ac0efaff4f729c817f88275f99c0d569e623726f7bc253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fabrication</topic><topic>Miniaturization</topic><topic>Molecular electronics, nanoelectronics</topic><topic>Molecules</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Semiconductors</topic><topic>Technological change</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gimzewski, J. K</creatorcontrib><creatorcontrib>Joachim, C</creatorcontrib><creatorcontrib>Aviram, A</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gimzewski, J. K</au><au>Joachim, C</au><au>Aviram, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronics using hybrid-molecular and mono-molecular devices</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>2000-11-30</date><risdate>2000</risdate><volume>408</volume><issue>6812</issue><spage>541</spage><epage>548</epage><pages>541-548</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The semiconductor industry has seen a remarkable miniaturization trend, driven by many scientific and technological innovations. But if this trend is to continue, and provide ever faster and cheaper computers, the size of microelectronic circuit components will soon need to reach the scale of atoms or molecules--a goal that will require conceptually new device structures. The idea that a few molecules, or even a single molecule, could be embedded between electrodes and perform the basic functions of digital electronics--rectification, amplification and storage--was first put forward in the mid-1970s. The concept is now realized for individual components, but the economic fabrication of complete circuits at the molecular level remains challenging because of the difficulty of connecting molecules to one another. A possible solution to this problem is 'mono-molecular' electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation.</abstract><cop>London</cop><pub>Nature Publishing</pub><pmid>11117734</pmid><doi>10.1038/35046000</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2000-11, Vol.408 (6812), p.541-548
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_72488414
source Nature; Alma/SFX Local Collection
subjects Applied sciences
Electronics
Exact sciences and technology
Fabrication
Miniaturization
Molecular electronics, nanoelectronics
Molecules
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Semiconductors
Technological change
title Electronics using hybrid-molecular and mono-molecular devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronics%20using%20hybrid-molecular%20and%20mono-molecular%20devices&rft.jtitle=Nature%20(London)&rft.au=Gimzewski,%20J.%20K&rft.date=2000-11-30&rft.volume=408&rft.issue=6812&rft.spage=541&rft.epage=548&rft.pages=541-548&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/35046000&rft_dat=%3Cgale_proqu%3EA188051276%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204472156&rft_id=info:pmid/11117734&rft_galeid=A188051276&rfr_iscdi=true