Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution
We describe a molecular model for rapid chromosomal evolution that proposes tandemly repeated DNA sequences as a driving force. A prediction of this model is that when extensive rearrangements of euchromatin have been facilitated by heterochromatin, genomes will be characterized by tandemly repeated...
Gespeichert in:
Veröffentlicht in: | The Journal of heredity 1991-09, Vol.82 (5), p.369-377 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 377 |
---|---|
container_issue | 5 |
container_start_page | 369 |
container_title | The Journal of heredity |
container_volume | 82 |
creator | Wichman, H.A. (University of Idaho, Moscow, ID) Payne, C.T Ryder, O.A Hamilton, M.J Maltbie, M Baker, R.J |
description | We describe a molecular model for rapid chromosomal evolution that proposes tandemly repeated DNA sequences as a driving force. A prediction of this model is that when extensive rearrangements of euchromatin have been facilitated by heterochromatin, genomes will be characterized by tandemly repeated sequences that have actively changed chromosomal fields by intragenomic movement. Alternatively, it is proposed that in conservative chromosomal lineage each class of tandemly repeated sequences will be restricted to a specific chromosomal field. To provide baseline data to test this model we examined four classes of tandemly repeated elements in six species of equids (Equus). Distribution of these sequences among special, as determined from slot blot analysis, and restriction site variation, shown by Southern blot hybridization, document that these sequences are in an evolutionarily dynamic state, and in situ hybridization documents extensive intragenomic movement among nonhomologous chromosomes and chromosomal fields. These data are interpreted as being compatible with the predictions of this model. Although this is clearly not the sole molecular factor driving chromosomal evolution, the model appears to be viable as an explanation of certain patterns of chromosomal evolution such as karyotypic megaevolution and some types of karyotypic orthoselection |
doi_str_mv | 10.1093/oxfordjournals.jhered.a111106 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72453354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72453354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-67d139a78597961979ee0e97f4045e9ae15a40f719293f8608a48e0d8465d2783</originalsourceid><addsrcrecordid>eNqFkVFvFCEUhYnR1LX6B0xMiFHfZr0MwwBNfDAbbW1qfFhrTF8Inbm4rDPDCjOm_ntpZ91EX-QBCOc7lwuHkJcMlgw0fx1uXIjtNkxxsF1abjcYsV1algfU98iCVbUoJOf8PlkAlGXBBPCH5FFKWwBgQsMROWK1UKysF2RzikPofUNbn8bor6fRh4EGRzc4YgzNJobejllP-GPCocFE_UDz3rfphPp-1_nG3noSHQONdudbemcKKRs7ij9Dd1fzMXngcr_4ZL8ek8v37z6vzoqLT6cfVm8vikZwGItatoxrK5XQUtcsT4iAWroKKoHaIhO2AieZLjV3qgZlK4XQqvzqtpSKH5NXc91dDLnjNJrepwa7zg4YpmRkWQnORfVfsAQBohJlBp__A_75fMO0gvzVIDL0ZoaaGFKK6Mwu-t7GX4aBuc3N_J2bmXMz-9yy_9n-kum6z-cH9xxU1l_sdZsa27loh8anAyZAM8VkxooZy2nizUG28bupJZfCnH29Mh_P5Zf11fnKrDP_dOadDcZ-i7nk5VozqWpd8d9hjMCa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198073305</pqid></control><display><type>article</type><title>Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution</title><source>MEDLINE</source><source>Oxford University Press Journals Digital Archive Legacy</source><creator>Wichman, H.A. (University of Idaho, Moscow, ID) ; Payne, C.T ; Ryder, O.A ; Hamilton, M.J ; Maltbie, M ; Baker, R.J</creator><creatorcontrib>Wichman, H.A. (University of Idaho, Moscow, ID) ; Payne, C.T ; Ryder, O.A ; Hamilton, M.J ; Maltbie, M ; Baker, R.J</creatorcontrib><description>We describe a molecular model for rapid chromosomal evolution that proposes tandemly repeated DNA sequences as a driving force. A prediction of this model is that when extensive rearrangements of euchromatin have been facilitated by heterochromatin, genomes will be characterized by tandemly repeated sequences that have actively changed chromosomal fields by intragenomic movement. Alternatively, it is proposed that in conservative chromosomal lineage each class of tandemly repeated sequences will be restricted to a specific chromosomal field. To provide baseline data to test this model we examined four classes of tandemly repeated elements in six species of equids (Equus). Distribution of these sequences among special, as determined from slot blot analysis, and restriction site variation, shown by Southern blot hybridization, document that these sequences are in an evolutionarily dynamic state, and in situ hybridization documents extensive intragenomic movement among nonhomologous chromosomes and chromosomal fields. These data are interpreted as being compatible with the predictions of this model. Although this is clearly not the sole molecular factor driving chromosomal evolution, the model appears to be viable as an explanation of certain patterns of chromosomal evolution such as karyotypic megaevolution and some types of karyotypic orthoselection</description><identifier>ISSN: 0022-1503</identifier><identifier>EISSN: 1465-7333</identifier><identifier>EISSN: 1471-8505</identifier><identifier>DOI: 10.1093/oxfordjournals.jhered.a111106</identifier><identifier>PMID: 1658126</identifier><identifier>CODEN: JOHEA8</identifier><language>eng</language><publisher>Cary, NC: Oxford University Press</publisher><subject>Animals ; Biological and medical sciences ; Biological Evolution ; Blotting, Southern ; CHROMATINE ; CHROMOSOME ; Chromosomes ; CROMATINA ; CROMOSOMAS ; Cytogenetics ; Deoxyribonucleic acid ; DNA ; DNA Restriction Enzymes ; EQUIDAE ; EVOLUCION ; EVOLUTION ; Fundamental and applied biological sciences. Psychology ; Genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Heterochromatin ; HETEROCHROMATINE ; HETEROCROMATINA ; Horses - genetics ; MODELE ; MODELOS ; Models, Genetic ; NUCLEOTIDE ; NUCLEOTIDOS ; Perissodactyla - genetics ; Repetitive Sequences, Nucleic Acid ; TECHNIQUE ANALYTIQUE ; TECNICAS ANALITICAS ; Vertebrata</subject><ispartof>The Journal of heredity, 1991-09, Vol.82 (5), p.369-377</ispartof><rights>1992 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Sep 1991</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-67d139a78597961979ee0e97f4045e9ae15a40f719293f8608a48e0d8465d2783</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5091817$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1658126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wichman, H.A. (University of Idaho, Moscow, ID)</creatorcontrib><creatorcontrib>Payne, C.T</creatorcontrib><creatorcontrib>Ryder, O.A</creatorcontrib><creatorcontrib>Hamilton, M.J</creatorcontrib><creatorcontrib>Maltbie, M</creatorcontrib><creatorcontrib>Baker, R.J</creatorcontrib><title>Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution</title><title>The Journal of heredity</title><addtitle>J Hered</addtitle><description>We describe a molecular model for rapid chromosomal evolution that proposes tandemly repeated DNA sequences as a driving force. A prediction of this model is that when extensive rearrangements of euchromatin have been facilitated by heterochromatin, genomes will be characterized by tandemly repeated sequences that have actively changed chromosomal fields by intragenomic movement. Alternatively, it is proposed that in conservative chromosomal lineage each class of tandemly repeated sequences will be restricted to a specific chromosomal field. To provide baseline data to test this model we examined four classes of tandemly repeated elements in six species of equids (Equus). Distribution of these sequences among special, as determined from slot blot analysis, and restriction site variation, shown by Southern blot hybridization, document that these sequences are in an evolutionarily dynamic state, and in situ hybridization documents extensive intragenomic movement among nonhomologous chromosomes and chromosomal fields. These data are interpreted as being compatible with the predictions of this model. Although this is clearly not the sole molecular factor driving chromosomal evolution, the model appears to be viable as an explanation of certain patterns of chromosomal evolution such as karyotypic megaevolution and some types of karyotypic orthoselection</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Blotting, Southern</subject><subject>CHROMATINE</subject><subject>CHROMOSOME</subject><subject>Chromosomes</subject><subject>CROMATINA</subject><subject>CROMOSOMAS</subject><subject>Cytogenetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Restriction Enzymes</subject><subject>EQUIDAE</subject><subject>EVOLUCION</subject><subject>EVOLUTION</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Heterochromatin</subject><subject>HETEROCHROMATINE</subject><subject>HETEROCROMATINA</subject><subject>Horses - genetics</subject><subject>MODELE</subject><subject>MODELOS</subject><subject>Models, Genetic</subject><subject>NUCLEOTIDE</subject><subject>NUCLEOTIDOS</subject><subject>Perissodactyla - genetics</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>TECHNIQUE ANALYTIQUE</subject><subject>TECNICAS ANALITICAS</subject><subject>Vertebrata</subject><issn>0022-1503</issn><issn>1465-7333</issn><issn>1471-8505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkVFvFCEUhYnR1LX6B0xMiFHfZr0MwwBNfDAbbW1qfFhrTF8Inbm4rDPDCjOm_ntpZ91EX-QBCOc7lwuHkJcMlgw0fx1uXIjtNkxxsF1abjcYsV1algfU98iCVbUoJOf8PlkAlGXBBPCH5FFKWwBgQsMROWK1UKysF2RzikPofUNbn8bor6fRh4EGRzc4YgzNJobejllP-GPCocFE_UDz3rfphPp-1_nG3noSHQONdudbemcKKRs7ij9Dd1fzMXngcr_4ZL8ek8v37z6vzoqLT6cfVm8vikZwGItatoxrK5XQUtcsT4iAWroKKoHaIhO2AieZLjV3qgZlK4XQqvzqtpSKH5NXc91dDLnjNJrepwa7zg4YpmRkWQnORfVfsAQBohJlBp__A_75fMO0gvzVIDL0ZoaaGFKK6Mwu-t7GX4aBuc3N_J2bmXMz-9yy_9n-kum6z-cH9xxU1l_sdZsa27loh8anAyZAM8VkxooZy2nizUG28bupJZfCnH29Mh_P5Zf11fnKrDP_dOadDcZ-i7nk5VozqWpd8d9hjMCa</recordid><startdate>19910901</startdate><enddate>19910901</enddate><creator>Wichman, H.A. (University of Idaho, Moscow, ID)</creator><creator>Payne, C.T</creator><creator>Ryder, O.A</creator><creator>Hamilton, M.J</creator><creator>Maltbie, M</creator><creator>Baker, R.J</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19910901</creationdate><title>Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution</title><author>Wichman, H.A. (University of Idaho, Moscow, ID) ; Payne, C.T ; Ryder, O.A ; Hamilton, M.J ; Maltbie, M ; Baker, R.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-67d139a78597961979ee0e97f4045e9ae15a40f719293f8608a48e0d8465d2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Blotting, Southern</topic><topic>CHROMATINE</topic><topic>CHROMOSOME</topic><topic>Chromosomes</topic><topic>CROMATINA</topic><topic>CROMOSOMAS</topic><topic>Cytogenetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Restriction Enzymes</topic><topic>EQUIDAE</topic><topic>EVOLUCION</topic><topic>EVOLUTION</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Heterochromatin</topic><topic>HETEROCHROMATINE</topic><topic>HETEROCROMATINA</topic><topic>Horses - genetics</topic><topic>MODELE</topic><topic>MODELOS</topic><topic>Models, Genetic</topic><topic>NUCLEOTIDE</topic><topic>NUCLEOTIDOS</topic><topic>Perissodactyla - genetics</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>TECHNIQUE ANALYTIQUE</topic><topic>TECNICAS ANALITICAS</topic><topic>Vertebrata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wichman, H.A. (University of Idaho, Moscow, ID)</creatorcontrib><creatorcontrib>Payne, C.T</creatorcontrib><creatorcontrib>Ryder, O.A</creatorcontrib><creatorcontrib>Hamilton, M.J</creatorcontrib><creatorcontrib>Maltbie, M</creatorcontrib><creatorcontrib>Baker, R.J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wichman, H.A. (University of Idaho, Moscow, ID)</au><au>Payne, C.T</au><au>Ryder, O.A</au><au>Hamilton, M.J</au><au>Maltbie, M</au><au>Baker, R.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution</atitle><jtitle>The Journal of heredity</jtitle><addtitle>J Hered</addtitle><date>1991-09-01</date><risdate>1991</risdate><volume>82</volume><issue>5</issue><spage>369</spage><epage>377</epage><pages>369-377</pages><issn>0022-1503</issn><eissn>1465-7333</eissn><eissn>1471-8505</eissn><coden>JOHEA8</coden><abstract>We describe a molecular model for rapid chromosomal evolution that proposes tandemly repeated DNA sequences as a driving force. A prediction of this model is that when extensive rearrangements of euchromatin have been facilitated by heterochromatin, genomes will be characterized by tandemly repeated sequences that have actively changed chromosomal fields by intragenomic movement. Alternatively, it is proposed that in conservative chromosomal lineage each class of tandemly repeated sequences will be restricted to a specific chromosomal field. To provide baseline data to test this model we examined four classes of tandemly repeated elements in six species of equids (Equus). Distribution of these sequences among special, as determined from slot blot analysis, and restriction site variation, shown by Southern blot hybridization, document that these sequences are in an evolutionarily dynamic state, and in situ hybridization documents extensive intragenomic movement among nonhomologous chromosomes and chromosomal fields. These data are interpreted as being compatible with the predictions of this model. Although this is clearly not the sole molecular factor driving chromosomal evolution, the model appears to be viable as an explanation of certain patterns of chromosomal evolution such as karyotypic megaevolution and some types of karyotypic orthoselection</abstract><cop>Cary, NC</cop><pub>Oxford University Press</pub><pmid>1658126</pmid><doi>10.1093/oxfordjournals.jhered.a111106</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1503 |
ispartof | The Journal of heredity, 1991-09, Vol.82 (5), p.369-377 |
issn | 0022-1503 1465-7333 1471-8505 |
language | eng |
recordid | cdi_proquest_miscellaneous_72453354 |
source | MEDLINE; Oxford University Press Journals Digital Archive Legacy |
subjects | Animals Biological and medical sciences Biological Evolution Blotting, Southern CHROMATINE CHROMOSOME Chromosomes CROMATINA CROMOSOMAS Cytogenetics Deoxyribonucleic acid DNA DNA Restriction Enzymes EQUIDAE EVOLUCION EVOLUTION Fundamental and applied biological sciences. Psychology Genetics Genetics of eukaryotes. Biological and molecular evolution Heterochromatin HETEROCHROMATINE HETEROCROMATINA Horses - genetics MODELE MODELOS Models, Genetic NUCLEOTIDE NUCLEOTIDOS Perissodactyla - genetics Repetitive Sequences, Nucleic Acid TECHNIQUE ANALYTIQUE TECNICAS ANALITICAS Vertebrata |
title | Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20distribution%20of%20heterochromatic%20sequences%20in%20equids:%20implications%20to%20rapid%20chromosomal%20evolution&rft.jtitle=The%20Journal%20of%20heredity&rft.au=Wichman,%20H.A.%20(University%20of%20Idaho,%20Moscow,%20ID)&rft.date=1991-09-01&rft.volume=82&rft.issue=5&rft.spage=369&rft.epage=377&rft.pages=369-377&rft.issn=0022-1503&rft.eissn=1465-7333&rft.coden=JOHEA8&rft_id=info:doi/10.1093/oxfordjournals.jhered.a111106&rft_dat=%3Cproquest_cross%3E72453354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198073305&rft_id=info:pmid/1658126&rfr_iscdi=true |