Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution

We describe a molecular model for rapid chromosomal evolution that proposes tandemly repeated DNA sequences as a driving force. A prediction of this model is that when extensive rearrangements of euchromatin have been facilitated by heterochromatin, genomes will be characterized by tandemly repeated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of heredity 1991-09, Vol.82 (5), p.369-377
Hauptverfasser: Wichman, H.A. (University of Idaho, Moscow, ID), Payne, C.T, Ryder, O.A, Hamilton, M.J, Maltbie, M, Baker, R.J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 377
container_issue 5
container_start_page 369
container_title The Journal of heredity
container_volume 82
creator Wichman, H.A. (University of Idaho, Moscow, ID)
Payne, C.T
Ryder, O.A
Hamilton, M.J
Maltbie, M
Baker, R.J
description We describe a molecular model for rapid chromosomal evolution that proposes tandemly repeated DNA sequences as a driving force. A prediction of this model is that when extensive rearrangements of euchromatin have been facilitated by heterochromatin, genomes will be characterized by tandemly repeated sequences that have actively changed chromosomal fields by intragenomic movement. Alternatively, it is proposed that in conservative chromosomal lineage each class of tandemly repeated sequences will be restricted to a specific chromosomal field. To provide baseline data to test this model we examined four classes of tandemly repeated elements in six species of equids (Equus). Distribution of these sequences among special, as determined from slot blot analysis, and restriction site variation, shown by Southern blot hybridization, document that these sequences are in an evolutionarily dynamic state, and in situ hybridization documents extensive intragenomic movement among nonhomologous chromosomes and chromosomal fields. These data are interpreted as being compatible with the predictions of this model. Although this is clearly not the sole molecular factor driving chromosomal evolution, the model appears to be viable as an explanation of certain patterns of chromosomal evolution such as karyotypic megaevolution and some types of karyotypic orthoselection
doi_str_mv 10.1093/oxfordjournals.jhered.a111106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72453354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72453354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-67d139a78597961979ee0e97f4045e9ae15a40f719293f8608a48e0d8465d2783</originalsourceid><addsrcrecordid>eNqFkVFvFCEUhYnR1LX6B0xMiFHfZr0MwwBNfDAbbW1qfFhrTF8Inbm4rDPDCjOm_ntpZ91EX-QBCOc7lwuHkJcMlgw0fx1uXIjtNkxxsF1abjcYsV1algfU98iCVbUoJOf8PlkAlGXBBPCH5FFKWwBgQsMROWK1UKysF2RzikPofUNbn8bor6fRh4EGRzc4YgzNJobejllP-GPCocFE_UDz3rfphPp-1_nG3noSHQONdudbemcKKRs7ij9Dd1fzMXngcr_4ZL8ek8v37z6vzoqLT6cfVm8vikZwGItatoxrK5XQUtcsT4iAWroKKoHaIhO2AieZLjV3qgZlK4XQqvzqtpSKH5NXc91dDLnjNJrepwa7zg4YpmRkWQnORfVfsAQBohJlBp__A_75fMO0gvzVIDL0ZoaaGFKK6Mwu-t7GX4aBuc3N_J2bmXMz-9yy_9n-kum6z-cH9xxU1l_sdZsa27loh8anAyZAM8VkxooZy2nizUG28bupJZfCnH29Mh_P5Zf11fnKrDP_dOadDcZ-i7nk5VozqWpd8d9hjMCa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198073305</pqid></control><display><type>article</type><title>Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution</title><source>MEDLINE</source><source>Oxford University Press Journals Digital Archive Legacy</source><creator>Wichman, H.A. (University of Idaho, Moscow, ID) ; Payne, C.T ; Ryder, O.A ; Hamilton, M.J ; Maltbie, M ; Baker, R.J</creator><creatorcontrib>Wichman, H.A. (University of Idaho, Moscow, ID) ; Payne, C.T ; Ryder, O.A ; Hamilton, M.J ; Maltbie, M ; Baker, R.J</creatorcontrib><description>We describe a molecular model for rapid chromosomal evolution that proposes tandemly repeated DNA sequences as a driving force. A prediction of this model is that when extensive rearrangements of euchromatin have been facilitated by heterochromatin, genomes will be characterized by tandemly repeated sequences that have actively changed chromosomal fields by intragenomic movement. Alternatively, it is proposed that in conservative chromosomal lineage each class of tandemly repeated sequences will be restricted to a specific chromosomal field. To provide baseline data to test this model we examined four classes of tandemly repeated elements in six species of equids (Equus). Distribution of these sequences among special, as determined from slot blot analysis, and restriction site variation, shown by Southern blot hybridization, document that these sequences are in an evolutionarily dynamic state, and in situ hybridization documents extensive intragenomic movement among nonhomologous chromosomes and chromosomal fields. These data are interpreted as being compatible with the predictions of this model. Although this is clearly not the sole molecular factor driving chromosomal evolution, the model appears to be viable as an explanation of certain patterns of chromosomal evolution such as karyotypic megaevolution and some types of karyotypic orthoselection</description><identifier>ISSN: 0022-1503</identifier><identifier>EISSN: 1465-7333</identifier><identifier>EISSN: 1471-8505</identifier><identifier>DOI: 10.1093/oxfordjournals.jhered.a111106</identifier><identifier>PMID: 1658126</identifier><identifier>CODEN: JOHEA8</identifier><language>eng</language><publisher>Cary, NC: Oxford University Press</publisher><subject>Animals ; Biological and medical sciences ; Biological Evolution ; Blotting, Southern ; CHROMATINE ; CHROMOSOME ; Chromosomes ; CROMATINA ; CROMOSOMAS ; Cytogenetics ; Deoxyribonucleic acid ; DNA ; DNA Restriction Enzymes ; EQUIDAE ; EVOLUCION ; EVOLUTION ; Fundamental and applied biological sciences. Psychology ; Genetics ; Genetics of eukaryotes. Biological and molecular evolution ; Heterochromatin ; HETEROCHROMATINE ; HETEROCROMATINA ; Horses - genetics ; MODELE ; MODELOS ; Models, Genetic ; NUCLEOTIDE ; NUCLEOTIDOS ; Perissodactyla - genetics ; Repetitive Sequences, Nucleic Acid ; TECHNIQUE ANALYTIQUE ; TECNICAS ANALITICAS ; Vertebrata</subject><ispartof>The Journal of heredity, 1991-09, Vol.82 (5), p.369-377</ispartof><rights>1992 INIST-CNRS</rights><rights>Copyright Oxford University Press(England) Sep 1991</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-67d139a78597961979ee0e97f4045e9ae15a40f719293f8608a48e0d8465d2783</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=5091817$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/1658126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wichman, H.A. (University of Idaho, Moscow, ID)</creatorcontrib><creatorcontrib>Payne, C.T</creatorcontrib><creatorcontrib>Ryder, O.A</creatorcontrib><creatorcontrib>Hamilton, M.J</creatorcontrib><creatorcontrib>Maltbie, M</creatorcontrib><creatorcontrib>Baker, R.J</creatorcontrib><title>Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution</title><title>The Journal of heredity</title><addtitle>J Hered</addtitle><description>We describe a molecular model for rapid chromosomal evolution that proposes tandemly repeated DNA sequences as a driving force. A prediction of this model is that when extensive rearrangements of euchromatin have been facilitated by heterochromatin, genomes will be characterized by tandemly repeated sequences that have actively changed chromosomal fields by intragenomic movement. Alternatively, it is proposed that in conservative chromosomal lineage each class of tandemly repeated sequences will be restricted to a specific chromosomal field. To provide baseline data to test this model we examined four classes of tandemly repeated elements in six species of equids (Equus). Distribution of these sequences among special, as determined from slot blot analysis, and restriction site variation, shown by Southern blot hybridization, document that these sequences are in an evolutionarily dynamic state, and in situ hybridization documents extensive intragenomic movement among nonhomologous chromosomes and chromosomal fields. These data are interpreted as being compatible with the predictions of this model. Although this is clearly not the sole molecular factor driving chromosomal evolution, the model appears to be viable as an explanation of certain patterns of chromosomal evolution such as karyotypic megaevolution and some types of karyotypic orthoselection</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Evolution</subject><subject>Blotting, Southern</subject><subject>CHROMATINE</subject><subject>CHROMOSOME</subject><subject>Chromosomes</subject><subject>CROMATINA</subject><subject>CROMOSOMAS</subject><subject>Cytogenetics</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Restriction Enzymes</subject><subject>EQUIDAE</subject><subject>EVOLUCION</subject><subject>EVOLUTION</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Heterochromatin</subject><subject>HETEROCHROMATINE</subject><subject>HETEROCROMATINA</subject><subject>Horses - genetics</subject><subject>MODELE</subject><subject>MODELOS</subject><subject>Models, Genetic</subject><subject>NUCLEOTIDE</subject><subject>NUCLEOTIDOS</subject><subject>Perissodactyla - genetics</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>TECHNIQUE ANALYTIQUE</subject><subject>TECNICAS ANALITICAS</subject><subject>Vertebrata</subject><issn>0022-1503</issn><issn>1465-7333</issn><issn>1471-8505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1991</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkVFvFCEUhYnR1LX6B0xMiFHfZr0MwwBNfDAbbW1qfFhrTF8Inbm4rDPDCjOm_ntpZ91EX-QBCOc7lwuHkJcMlgw0fx1uXIjtNkxxsF1abjcYsV1algfU98iCVbUoJOf8PlkAlGXBBPCH5FFKWwBgQsMROWK1UKysF2RzikPofUNbn8bor6fRh4EGRzc4YgzNJobejllP-GPCocFE_UDz3rfphPp-1_nG3noSHQONdudbemcKKRs7ij9Dd1fzMXngcr_4ZL8ek8v37z6vzoqLT6cfVm8vikZwGItatoxrK5XQUtcsT4iAWroKKoHaIhO2AieZLjV3qgZlK4XQqvzqtpSKH5NXc91dDLnjNJrepwa7zg4YpmRkWQnORfVfsAQBohJlBp__A_75fMO0gvzVIDL0ZoaaGFKK6Mwu-t7GX4aBuc3N_J2bmXMz-9yy_9n-kum6z-cH9xxU1l_sdZsa27loh8anAyZAM8VkxooZy2nizUG28bupJZfCnH29Mh_P5Zf11fnKrDP_dOadDcZ-i7nk5VozqWpd8d9hjMCa</recordid><startdate>19910901</startdate><enddate>19910901</enddate><creator>Wichman, H.A. (University of Idaho, Moscow, ID)</creator><creator>Payne, C.T</creator><creator>Ryder, O.A</creator><creator>Hamilton, M.J</creator><creator>Maltbie, M</creator><creator>Baker, R.J</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>19910901</creationdate><title>Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution</title><author>Wichman, H.A. (University of Idaho, Moscow, ID) ; Payne, C.T ; Ryder, O.A ; Hamilton, M.J ; Maltbie, M ; Baker, R.J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-67d139a78597961979ee0e97f4045e9ae15a40f719293f8608a48e0d8465d2783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1991</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Evolution</topic><topic>Blotting, Southern</topic><topic>CHROMATINE</topic><topic>CHROMOSOME</topic><topic>Chromosomes</topic><topic>CROMATINA</topic><topic>CROMOSOMAS</topic><topic>Cytogenetics</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Restriction Enzymes</topic><topic>EQUIDAE</topic><topic>EVOLUCION</topic><topic>EVOLUTION</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Heterochromatin</topic><topic>HETEROCHROMATINE</topic><topic>HETEROCROMATINA</topic><topic>Horses - genetics</topic><topic>MODELE</topic><topic>MODELOS</topic><topic>Models, Genetic</topic><topic>NUCLEOTIDE</topic><topic>NUCLEOTIDOS</topic><topic>Perissodactyla - genetics</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>TECHNIQUE ANALYTIQUE</topic><topic>TECNICAS ANALITICAS</topic><topic>Vertebrata</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wichman, H.A. (University of Idaho, Moscow, ID)</creatorcontrib><creatorcontrib>Payne, C.T</creatorcontrib><creatorcontrib>Ryder, O.A</creatorcontrib><creatorcontrib>Hamilton, M.J</creatorcontrib><creatorcontrib>Maltbie, M</creatorcontrib><creatorcontrib>Baker, R.J</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of heredity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wichman, H.A. (University of Idaho, Moscow, ID)</au><au>Payne, C.T</au><au>Ryder, O.A</au><au>Hamilton, M.J</au><au>Maltbie, M</au><au>Baker, R.J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution</atitle><jtitle>The Journal of heredity</jtitle><addtitle>J Hered</addtitle><date>1991-09-01</date><risdate>1991</risdate><volume>82</volume><issue>5</issue><spage>369</spage><epage>377</epage><pages>369-377</pages><issn>0022-1503</issn><eissn>1465-7333</eissn><eissn>1471-8505</eissn><coden>JOHEA8</coden><abstract>We describe a molecular model for rapid chromosomal evolution that proposes tandemly repeated DNA sequences as a driving force. A prediction of this model is that when extensive rearrangements of euchromatin have been facilitated by heterochromatin, genomes will be characterized by tandemly repeated sequences that have actively changed chromosomal fields by intragenomic movement. Alternatively, it is proposed that in conservative chromosomal lineage each class of tandemly repeated sequences will be restricted to a specific chromosomal field. To provide baseline data to test this model we examined four classes of tandemly repeated elements in six species of equids (Equus). Distribution of these sequences among special, as determined from slot blot analysis, and restriction site variation, shown by Southern blot hybridization, document that these sequences are in an evolutionarily dynamic state, and in situ hybridization documents extensive intragenomic movement among nonhomologous chromosomes and chromosomal fields. These data are interpreted as being compatible with the predictions of this model. Although this is clearly not the sole molecular factor driving chromosomal evolution, the model appears to be viable as an explanation of certain patterns of chromosomal evolution such as karyotypic megaevolution and some types of karyotypic orthoselection</abstract><cop>Cary, NC</cop><pub>Oxford University Press</pub><pmid>1658126</pmid><doi>10.1093/oxfordjournals.jhered.a111106</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1503
ispartof The Journal of heredity, 1991-09, Vol.82 (5), p.369-377
issn 0022-1503
1465-7333
1471-8505
language eng
recordid cdi_proquest_miscellaneous_72453354
source MEDLINE; Oxford University Press Journals Digital Archive Legacy
subjects Animals
Biological and medical sciences
Biological Evolution
Blotting, Southern
CHROMATINE
CHROMOSOME
Chromosomes
CROMATINA
CROMOSOMAS
Cytogenetics
Deoxyribonucleic acid
DNA
DNA Restriction Enzymes
EQUIDAE
EVOLUCION
EVOLUTION
Fundamental and applied biological sciences. Psychology
Genetics
Genetics of eukaryotes. Biological and molecular evolution
Heterochromatin
HETEROCHROMATINE
HETEROCROMATINA
Horses - genetics
MODELE
MODELOS
Models, Genetic
NUCLEOTIDE
NUCLEOTIDOS
Perissodactyla - genetics
Repetitive Sequences, Nucleic Acid
TECHNIQUE ANALYTIQUE
TECNICAS ANALITICAS
Vertebrata
title Genomic distribution of heterochromatic sequences in equids: implications to rapid chromosomal evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A43%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genomic%20distribution%20of%20heterochromatic%20sequences%20in%20equids:%20implications%20to%20rapid%20chromosomal%20evolution&rft.jtitle=The%20Journal%20of%20heredity&rft.au=Wichman,%20H.A.%20(University%20of%20Idaho,%20Moscow,%20ID)&rft.date=1991-09-01&rft.volume=82&rft.issue=5&rft.spage=369&rft.epage=377&rft.pages=369-377&rft.issn=0022-1503&rft.eissn=1465-7333&rft.coden=JOHEA8&rft_id=info:doi/10.1093/oxfordjournals.jhered.a111106&rft_dat=%3Cproquest_cross%3E72453354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198073305&rft_id=info:pmid/1658126&rfr_iscdi=true