Inhibition-based rhythms: experimental and mathematical observations on network dynamics

An increasingly large body of data exists which demonstrates that oscillations of frequency 12–80 Hz are a consequence of, or are inextricably linked to, the behaviour of inhibitory interneurons in the central nervous system. This frequency range covers the EEG bands beta 1 (12–20 Hz), beta 2 (20–30...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of psychophysiology 2000-12, Vol.38 (3), p.315-336
Hauptverfasser: Whittington, M.A, Traub, R.D, Kopell, N, Ermentrout, B, Buhl, E.H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue 3
container_start_page 315
container_title International journal of psychophysiology
container_volume 38
creator Whittington, M.A
Traub, R.D
Kopell, N
Ermentrout, B
Buhl, E.H
description An increasingly large body of data exists which demonstrates that oscillations of frequency 12–80 Hz are a consequence of, or are inextricably linked to, the behaviour of inhibitory interneurons in the central nervous system. This frequency range covers the EEG bands beta 1 (12–20 Hz), beta 2 (20–30 Hz) and gamma (30–80 Hz). The pharmacological profile of both spontaneous and sensory-evoked EEG potentials reveals a very strong influence on these rhythms by drugs which have direct effects on GABA A receptor-mediated synaptic transmission (general anaesthetics, sedative/hypnotics) or indirect effects on inhibitory neuronal function (opiates, ketamine). In addition, a number of experimental models of, in particular, gamma-frequency oscillations, have revealed both common denominators for oscillation generation and function, and subtle differences in network dynamics between the different frequency ranges. Powerful computer and mathematical modelling techniques based around both clinical and experimental observations have recently provided invaluable insight into the behaviour of large networks of interconnected neurons. In particular, the mechanistic profile of oscillations generated as an emergent property of such networks, and the mathematical derivation of this complex phenomenon have much to contribute to our understanding of how and why neurons oscillate. This review will provide the reader with a brief outline of the basic properties of inhibition-based oscillations in the CNS by combining research from laboratory models, large-scale neuronal network simulations, and mathematical analysis.
doi_str_mv 10.1016/S0167-8760(00)00173-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72450983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167876000001732</els_id><sourcerecordid>72450983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-6c4b6d83136ec08c2e536b83ed3822633082a5ec2d001c446b833c478fc331283</originalsourceid><addsrcrecordid>eNqFkE9LJDEQxYO4rOPsfgSlT6KHXitJd5LxIiL-A8GDK3gL6aSGiU6nx6Rn1vn2pp1BjwtFFSTvVfF-hBxQ-EOBitPH3GSppIBjgBMAKnnJdsiIKslKKSZyl4y-JHtkP6UXAJB0MvlJ9iilwISEEXm-CzPf-N53oWxMQlfE2bqftemswPcFRt9i6M28MMEVrelnmJu3-aFrEsaVGYyp6EIRsP_XxdfCrYNpvU2_yI-pmSf8vZ1j8nR99ffytrx_uLm7vLgvbc1EXwpbNcIpTrlAC8oyrLloFEfHFWOCc1DM1GiZyxFtVQ1_3FZSTS3nlCk-JkebvYvYvS0x9br1yeJ8bgJ2y6Qlq2qYZNOY1BuhjV1KEad6kdOZuNYU9IBUfyLVAy8NQ2WkmmXf4fbAsmnRfbu2DLPgfCPAHHPlMepkPQaLzke0vXad_8-JDxuchlw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72450983</pqid></control><display><type>article</type><title>Inhibition-based rhythms: experimental and mathematical observations on network dynamics</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Whittington, M.A ; Traub, R.D ; Kopell, N ; Ermentrout, B ; Buhl, E.H</creator><creatorcontrib>Whittington, M.A ; Traub, R.D ; Kopell, N ; Ermentrout, B ; Buhl, E.H</creatorcontrib><description>An increasingly large body of data exists which demonstrates that oscillations of frequency 12–80 Hz are a consequence of, or are inextricably linked to, the behaviour of inhibitory interneurons in the central nervous system. This frequency range covers the EEG bands beta 1 (12–20 Hz), beta 2 (20–30 Hz) and gamma (30–80 Hz). The pharmacological profile of both spontaneous and sensory-evoked EEG potentials reveals a very strong influence on these rhythms by drugs which have direct effects on GABA A receptor-mediated synaptic transmission (general anaesthetics, sedative/hypnotics) or indirect effects on inhibitory neuronal function (opiates, ketamine). In addition, a number of experimental models of, in particular, gamma-frequency oscillations, have revealed both common denominators for oscillation generation and function, and subtle differences in network dynamics between the different frequency ranges. Powerful computer and mathematical modelling techniques based around both clinical and experimental observations have recently provided invaluable insight into the behaviour of large networks of interconnected neurons. In particular, the mechanistic profile of oscillations generated as an emergent property of such networks, and the mathematical derivation of this complex phenomenon have much to contribute to our understanding of how and why neurons oscillate. This review will provide the reader with a brief outline of the basic properties of inhibition-based oscillations in the CNS by combining research from laboratory models, large-scale neuronal network simulations, and mathematical analysis.</description><identifier>ISSN: 0167-8760</identifier><identifier>EISSN: 1872-7697</identifier><identifier>DOI: 10.1016/S0167-8760(00)00173-2</identifier><identifier>PMID: 11102670</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Beta oscillation ; Electroencephalography ; GABA ; Gamma oscillation ; Humans ; Inhibition ; Models, Biological ; Network dynamics ; Neural Networks (Computer) ; Synchrony</subject><ispartof>International journal of psychophysiology, 2000-12, Vol.38 (3), p.315-336</ispartof><rights>2000 Elsevier Science B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-6c4b6d83136ec08c2e536b83ed3822633082a5ec2d001c446b833c478fc331283</citedby><cites>FETCH-LOGICAL-c526t-6c4b6d83136ec08c2e536b83ed3822633082a5ec2d001c446b833c478fc331283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167876000001732$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11102670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whittington, M.A</creatorcontrib><creatorcontrib>Traub, R.D</creatorcontrib><creatorcontrib>Kopell, N</creatorcontrib><creatorcontrib>Ermentrout, B</creatorcontrib><creatorcontrib>Buhl, E.H</creatorcontrib><title>Inhibition-based rhythms: experimental and mathematical observations on network dynamics</title><title>International journal of psychophysiology</title><addtitle>Int J Psychophysiol</addtitle><description>An increasingly large body of data exists which demonstrates that oscillations of frequency 12–80 Hz are a consequence of, or are inextricably linked to, the behaviour of inhibitory interneurons in the central nervous system. This frequency range covers the EEG bands beta 1 (12–20 Hz), beta 2 (20–30 Hz) and gamma (30–80 Hz). The pharmacological profile of both spontaneous and sensory-evoked EEG potentials reveals a very strong influence on these rhythms by drugs which have direct effects on GABA A receptor-mediated synaptic transmission (general anaesthetics, sedative/hypnotics) or indirect effects on inhibitory neuronal function (opiates, ketamine). In addition, a number of experimental models of, in particular, gamma-frequency oscillations, have revealed both common denominators for oscillation generation and function, and subtle differences in network dynamics between the different frequency ranges. Powerful computer and mathematical modelling techniques based around both clinical and experimental observations have recently provided invaluable insight into the behaviour of large networks of interconnected neurons. In particular, the mechanistic profile of oscillations generated as an emergent property of such networks, and the mathematical derivation of this complex phenomenon have much to contribute to our understanding of how and why neurons oscillate. This review will provide the reader with a brief outline of the basic properties of inhibition-based oscillations in the CNS by combining research from laboratory models, large-scale neuronal network simulations, and mathematical analysis.</description><subject>Beta oscillation</subject><subject>Electroencephalography</subject><subject>GABA</subject><subject>Gamma oscillation</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Models, Biological</subject><subject>Network dynamics</subject><subject>Neural Networks (Computer)</subject><subject>Synchrony</subject><issn>0167-8760</issn><issn>1872-7697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE9LJDEQxYO4rOPsfgSlT6KHXitJd5LxIiL-A8GDK3gL6aSGiU6nx6Rn1vn2pp1BjwtFFSTvVfF-hBxQ-EOBitPH3GSppIBjgBMAKnnJdsiIKslKKSZyl4y-JHtkP6UXAJB0MvlJ9iilwISEEXm-CzPf-N53oWxMQlfE2bqftemswPcFRt9i6M28MMEVrelnmJu3-aFrEsaVGYyp6EIRsP_XxdfCrYNpvU2_yI-pmSf8vZ1j8nR99ffytrx_uLm7vLgvbc1EXwpbNcIpTrlAC8oyrLloFEfHFWOCc1DM1GiZyxFtVQ1_3FZSTS3nlCk-JkebvYvYvS0x9br1yeJ8bgJ2y6Qlq2qYZNOY1BuhjV1KEad6kdOZuNYU9IBUfyLVAy8NQ2WkmmXf4fbAsmnRfbu2DLPgfCPAHHPlMepkPQaLzke0vXad_8-JDxuchlw</recordid><startdate>20001201</startdate><enddate>20001201</enddate><creator>Whittington, M.A</creator><creator>Traub, R.D</creator><creator>Kopell, N</creator><creator>Ermentrout, B</creator><creator>Buhl, E.H</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20001201</creationdate><title>Inhibition-based rhythms: experimental and mathematical observations on network dynamics</title><author>Whittington, M.A ; Traub, R.D ; Kopell, N ; Ermentrout, B ; Buhl, E.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-6c4b6d83136ec08c2e536b83ed3822633082a5ec2d001c446b833c478fc331283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Beta oscillation</topic><topic>Electroencephalography</topic><topic>GABA</topic><topic>Gamma oscillation</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Models, Biological</topic><topic>Network dynamics</topic><topic>Neural Networks (Computer)</topic><topic>Synchrony</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whittington, M.A</creatorcontrib><creatorcontrib>Traub, R.D</creatorcontrib><creatorcontrib>Kopell, N</creatorcontrib><creatorcontrib>Ermentrout, B</creatorcontrib><creatorcontrib>Buhl, E.H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of psychophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whittington, M.A</au><au>Traub, R.D</au><au>Kopell, N</au><au>Ermentrout, B</au><au>Buhl, E.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition-based rhythms: experimental and mathematical observations on network dynamics</atitle><jtitle>International journal of psychophysiology</jtitle><addtitle>Int J Psychophysiol</addtitle><date>2000-12-01</date><risdate>2000</risdate><volume>38</volume><issue>3</issue><spage>315</spage><epage>336</epage><pages>315-336</pages><issn>0167-8760</issn><eissn>1872-7697</eissn><abstract>An increasingly large body of data exists which demonstrates that oscillations of frequency 12–80 Hz are a consequence of, or are inextricably linked to, the behaviour of inhibitory interneurons in the central nervous system. This frequency range covers the EEG bands beta 1 (12–20 Hz), beta 2 (20–30 Hz) and gamma (30–80 Hz). The pharmacological profile of both spontaneous and sensory-evoked EEG potentials reveals a very strong influence on these rhythms by drugs which have direct effects on GABA A receptor-mediated synaptic transmission (general anaesthetics, sedative/hypnotics) or indirect effects on inhibitory neuronal function (opiates, ketamine). In addition, a number of experimental models of, in particular, gamma-frequency oscillations, have revealed both common denominators for oscillation generation and function, and subtle differences in network dynamics between the different frequency ranges. Powerful computer and mathematical modelling techniques based around both clinical and experimental observations have recently provided invaluable insight into the behaviour of large networks of interconnected neurons. In particular, the mechanistic profile of oscillations generated as an emergent property of such networks, and the mathematical derivation of this complex phenomenon have much to contribute to our understanding of how and why neurons oscillate. This review will provide the reader with a brief outline of the basic properties of inhibition-based oscillations in the CNS by combining research from laboratory models, large-scale neuronal network simulations, and mathematical analysis.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>11102670</pmid><doi>10.1016/S0167-8760(00)00173-2</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-8760
ispartof International journal of psychophysiology, 2000-12, Vol.38 (3), p.315-336
issn 0167-8760
1872-7697
language eng
recordid cdi_proquest_miscellaneous_72450983
source MEDLINE; Elsevier ScienceDirect Journals
subjects Beta oscillation
Electroencephalography
GABA
Gamma oscillation
Humans
Inhibition
Models, Biological
Network dynamics
Neural Networks (Computer)
Synchrony
title Inhibition-based rhythms: experimental and mathematical observations on network dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A59%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition-based%20rhythms:%20experimental%20and%20mathematical%20observations%20on%20network%20dynamics&rft.jtitle=International%20journal%20of%20psychophysiology&rft.au=Whittington,%20M.A&rft.date=2000-12-01&rft.volume=38&rft.issue=3&rft.spage=315&rft.epage=336&rft.pages=315-336&rft.issn=0167-8760&rft.eissn=1872-7697&rft_id=info:doi/10.1016/S0167-8760(00)00173-2&rft_dat=%3Cproquest_cross%3E72450983%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72450983&rft_id=info:pmid/11102670&rft_els_id=S0167876000001732&rfr_iscdi=true