Transmembrane Redox Sensor of Ryanodine Receptor Complex

Inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR) mediate the release of endoplasmic and sarcoplasmic reticulum (ER/SR) Ca2+stores and regulate Ca2+ entry through voltage-dependent or ligand-gated channels of the plasma membrane. A prominent property of ER/SR Ca2+ channels...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-11, Vol.275 (46), p.35902-35907
Hauptverfasser: Feng, Wei, Liu, Guohua, Allen, Paul D., Pessah, Isaac N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35907
container_issue 46
container_start_page 35902
container_title The Journal of biological chemistry
container_volume 275
creator Feng, Wei
Liu, Guohua
Allen, Paul D.
Pessah, Isaac N.
description Inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR) mediate the release of endoplasmic and sarcoplasmic reticulum (ER/SR) Ca2+stores and regulate Ca2+ entry through voltage-dependent or ligand-gated channels of the plasma membrane. A prominent property of ER/SR Ca2+ channels is exquisite sensitivity to sulfhydryl-modifying reagents. A plausible role for sulfhydryl chemistry in physiologic regulation of Ca2+ release channels and the fidelity of Ca2+release from ER/SR is lacking. This study reveals the existence of a transmembrane redox sensor within the RyR1 channel complex that confers tight regulation of channel activity in response to changes in transmembrane redox potential produced by cytoplasmic and luminal glutathione. A transporter selective for glutathione is co-localized with RyR1 within the SR membrane to maintain local redox potential gradients consistent with redox regulation of ER/SR Ca2+release. Hyperreactive sulfhydryls previously shown to reside within the RyR1 complex (Liu, G., and Pessah, I. N. (1994) J. Biol. Chem. 269, 33028–33034) are an essential biochemical component of a transmembrane redox sensor. Transmembrane redox sensing may represent a fundamental mechanism by which ER/SR Ca2+channels respond to localized changes in transmembrane glutathione redox potential produced by physiologic and pathophysiologic modulators of Ca2+ release from stores.
doi_str_mv 10.1074/jbc.C000523200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72436661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820886888</els_id><sourcerecordid>72436661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-52c9d45bf3dff1406f13ca7dce40e1ff58421786e49ea139591380ff4dad376b3</originalsourceid><addsrcrecordid>eNqFkE1LJDEQhoO46Phx9ShzkL31bFU-ujtHGdZVEBZcBW-hO6k4kenJbDKz6r_faAvuRfb0QtVTxcvD2AnCDKGR3x57O5sDgOKCA-ywCUIrKqHwfpdNADhWmqt2nx3k_FgwkBr32D6C1q1EOWHtbepWeaChL0nTG3LxefqLVjmmafTTm5duFV1421hab8p0Hof1kp6P2BffLTMdv-chu7v4fju_rK5__rian19XVkrYVIpb7aTqvXDeo4Tao7Bd4yxJIPRetZJj09YkNXUotNIoWvBeus6Jpu7FIfs6_l2n-HtLeWOGkC0tl6Vu3GbTcCnqusb_gtiABNCv4GwEbYo5J_JmncLQpReDYF6lmiLVfEgtB6fvn7f9QO4ffLRYgLMRWISHxVNIZPoQ7YIGwxtlZG2E0sAL1o4YFV9_AiWTbaCVJVdO7Ma4GD6r8BddXo_a</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17040091</pqid></control><display><type>article</type><title>Transmembrane Redox Sensor of Ryanodine Receptor Complex</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Feng, Wei ; Liu, Guohua ; Allen, Paul D. ; Pessah, Isaac N.</creator><creatorcontrib>Feng, Wei ; Liu, Guohua ; Allen, Paul D. ; Pessah, Isaac N.</creatorcontrib><description>Inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR) mediate the release of endoplasmic and sarcoplasmic reticulum (ER/SR) Ca2+stores and regulate Ca2+ entry through voltage-dependent or ligand-gated channels of the plasma membrane. A prominent property of ER/SR Ca2+ channels is exquisite sensitivity to sulfhydryl-modifying reagents. A plausible role for sulfhydryl chemistry in physiologic regulation of Ca2+ release channels and the fidelity of Ca2+release from ER/SR is lacking. This study reveals the existence of a transmembrane redox sensor within the RyR1 channel complex that confers tight regulation of channel activity in response to changes in transmembrane redox potential produced by cytoplasmic and luminal glutathione. A transporter selective for glutathione is co-localized with RyR1 within the SR membrane to maintain local redox potential gradients consistent with redox regulation of ER/SR Ca2+release. Hyperreactive sulfhydryls previously shown to reside within the RyR1 complex (Liu, G., and Pessah, I. N. (1994) J. Biol. Chem. 269, 33028–33034) are an essential biochemical component of a transmembrane redox sensor. Transmembrane redox sensing may represent a fundamental mechanism by which ER/SR Ca2+channels respond to localized changes in transmembrane glutathione redox potential produced by physiologic and pathophysiologic modulators of Ca2+ release from stores.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.C000523200</identifier><identifier>PMID: 10998414</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Calcium - metabolism ; Carrier Proteins - metabolism ; Coumarins - metabolism ; Flufenamic Acid ; Fluorescent Dyes ; Fluorometry ; Glutathione - metabolism ; Glutathione Disulfide - metabolism ; Ion Channel Gating ; Lipid Bilayers - chemistry ; Lipid Bilayers - metabolism ; Membrane Potentials ; Oxidation-Reduction ; Rabbits ; Ryanodine Receptor Calcium Release Channel - chemistry ; Ryanodine Receptor Calcium Release Channel - metabolism ; Sarcoplasmic Reticulum - metabolism ; Sulfhydryl Compounds - metabolism</subject><ispartof>The Journal of biological chemistry, 2000-11, Vol.275 (46), p.35902-35907</ispartof><rights>2000 © 2000 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-52c9d45bf3dff1406f13ca7dce40e1ff58421786e49ea139591380ff4dad376b3</citedby><cites>FETCH-LOGICAL-c440t-52c9d45bf3dff1406f13ca7dce40e1ff58421786e49ea139591380ff4dad376b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10998414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Liu, Guohua</creatorcontrib><creatorcontrib>Allen, Paul D.</creatorcontrib><creatorcontrib>Pessah, Isaac N.</creatorcontrib><title>Transmembrane Redox Sensor of Ryanodine Receptor Complex</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR) mediate the release of endoplasmic and sarcoplasmic reticulum (ER/SR) Ca2+stores and regulate Ca2+ entry through voltage-dependent or ligand-gated channels of the plasma membrane. A prominent property of ER/SR Ca2+ channels is exquisite sensitivity to sulfhydryl-modifying reagents. A plausible role for sulfhydryl chemistry in physiologic regulation of Ca2+ release channels and the fidelity of Ca2+release from ER/SR is lacking. This study reveals the existence of a transmembrane redox sensor within the RyR1 channel complex that confers tight regulation of channel activity in response to changes in transmembrane redox potential produced by cytoplasmic and luminal glutathione. A transporter selective for glutathione is co-localized with RyR1 within the SR membrane to maintain local redox potential gradients consistent with redox regulation of ER/SR Ca2+release. Hyperreactive sulfhydryls previously shown to reside within the RyR1 complex (Liu, G., and Pessah, I. N. (1994) J. Biol. Chem. 269, 33028–33034) are an essential biochemical component of a transmembrane redox sensor. Transmembrane redox sensing may represent a fundamental mechanism by which ER/SR Ca2+channels respond to localized changes in transmembrane glutathione redox potential produced by physiologic and pathophysiologic modulators of Ca2+ release from stores.</description><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Carrier Proteins - metabolism</subject><subject>Coumarins - metabolism</subject><subject>Flufenamic Acid</subject><subject>Fluorescent Dyes</subject><subject>Fluorometry</subject><subject>Glutathione - metabolism</subject><subject>Glutathione Disulfide - metabolism</subject><subject>Ion Channel Gating</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipid Bilayers - metabolism</subject><subject>Membrane Potentials</subject><subject>Oxidation-Reduction</subject><subject>Rabbits</subject><subject>Ryanodine Receptor Calcium Release Channel - chemistry</subject><subject>Ryanodine Receptor Calcium Release Channel - metabolism</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Sulfhydryl Compounds - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LJDEQhoO46Phx9ShzkL31bFU-ujtHGdZVEBZcBW-hO6k4kenJbDKz6r_faAvuRfb0QtVTxcvD2AnCDKGR3x57O5sDgOKCA-ywCUIrKqHwfpdNADhWmqt2nx3k_FgwkBr32D6C1q1EOWHtbepWeaChL0nTG3LxefqLVjmmafTTm5duFV1421hab8p0Hof1kp6P2BffLTMdv-chu7v4fju_rK5__rian19XVkrYVIpb7aTqvXDeo4Tao7Bd4yxJIPRetZJj09YkNXUotNIoWvBeus6Jpu7FIfs6_l2n-HtLeWOGkC0tl6Vu3GbTcCnqusb_gtiABNCv4GwEbYo5J_JmncLQpReDYF6lmiLVfEgtB6fvn7f9QO4ffLRYgLMRWISHxVNIZPoQ7YIGwxtlZG2E0sAL1o4YFV9_AiWTbaCVJVdO7Ma4GD6r8BddXo_a</recordid><startdate>20001117</startdate><enddate>20001117</enddate><creator>Feng, Wei</creator><creator>Liu, Guohua</creator><creator>Allen, Paul D.</creator><creator>Pessah, Isaac N.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope></search><sort><creationdate>20001117</creationdate><title>Transmembrane Redox Sensor of Ryanodine Receptor Complex</title><author>Feng, Wei ; Liu, Guohua ; Allen, Paul D. ; Pessah, Isaac N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-52c9d45bf3dff1406f13ca7dce40e1ff58421786e49ea139591380ff4dad376b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Carrier Proteins - metabolism</topic><topic>Coumarins - metabolism</topic><topic>Flufenamic Acid</topic><topic>Fluorescent Dyes</topic><topic>Fluorometry</topic><topic>Glutathione - metabolism</topic><topic>Glutathione Disulfide - metabolism</topic><topic>Ion Channel Gating</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipid Bilayers - metabolism</topic><topic>Membrane Potentials</topic><topic>Oxidation-Reduction</topic><topic>Rabbits</topic><topic>Ryanodine Receptor Calcium Release Channel - chemistry</topic><topic>Ryanodine Receptor Calcium Release Channel - metabolism</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Sulfhydryl Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Wei</creatorcontrib><creatorcontrib>Liu, Guohua</creatorcontrib><creatorcontrib>Allen, Paul D.</creatorcontrib><creatorcontrib>Pessah, Isaac N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Wei</au><au>Liu, Guohua</au><au>Allen, Paul D.</au><au>Pessah, Isaac N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transmembrane Redox Sensor of Ryanodine Receptor Complex</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2000-11-17</date><risdate>2000</risdate><volume>275</volume><issue>46</issue><spage>35902</spage><epage>35907</epage><pages>35902-35907</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Inositol 1,4,5-trisphosphate receptors (IP3R) and ryanodine receptors (RyR) mediate the release of endoplasmic and sarcoplasmic reticulum (ER/SR) Ca2+stores and regulate Ca2+ entry through voltage-dependent or ligand-gated channels of the plasma membrane. A prominent property of ER/SR Ca2+ channels is exquisite sensitivity to sulfhydryl-modifying reagents. A plausible role for sulfhydryl chemistry in physiologic regulation of Ca2+ release channels and the fidelity of Ca2+release from ER/SR is lacking. This study reveals the existence of a transmembrane redox sensor within the RyR1 channel complex that confers tight regulation of channel activity in response to changes in transmembrane redox potential produced by cytoplasmic and luminal glutathione. A transporter selective for glutathione is co-localized with RyR1 within the SR membrane to maintain local redox potential gradients consistent with redox regulation of ER/SR Ca2+release. Hyperreactive sulfhydryls previously shown to reside within the RyR1 complex (Liu, G., and Pessah, I. N. (1994) J. Biol. Chem. 269, 33028–33034) are an essential biochemical component of a transmembrane redox sensor. Transmembrane redox sensing may represent a fundamental mechanism by which ER/SR Ca2+channels respond to localized changes in transmembrane glutathione redox potential produced by physiologic and pathophysiologic modulators of Ca2+ release from stores.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>10998414</pmid><doi>10.1074/jbc.C000523200</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2000-11, Vol.275 (46), p.35902-35907
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_72436661
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Calcium - metabolism
Carrier Proteins - metabolism
Coumarins - metabolism
Flufenamic Acid
Fluorescent Dyes
Fluorometry
Glutathione - metabolism
Glutathione Disulfide - metabolism
Ion Channel Gating
Lipid Bilayers - chemistry
Lipid Bilayers - metabolism
Membrane Potentials
Oxidation-Reduction
Rabbits
Ryanodine Receptor Calcium Release Channel - chemistry
Ryanodine Receptor Calcium Release Channel - metabolism
Sarcoplasmic Reticulum - metabolism
Sulfhydryl Compounds - metabolism
title Transmembrane Redox Sensor of Ryanodine Receptor Complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T05%3A33%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transmembrane%20Redox%20Sensor%20of%20Ryanodine%20Receptor%20Complex&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Feng,%20Wei&rft.date=2000-11-17&rft.volume=275&rft.issue=46&rft.spage=35902&rft.epage=35907&rft.pages=35902-35907&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.C000523200&rft_dat=%3Cproquest_cross%3E72436661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17040091&rft_id=info:pmid/10998414&rft_els_id=S0021925820886888&rfr_iscdi=true