Application of transmission near-infrared spectroscopy to uniformity of content testing of intact steroid tablets

Transmission near-infrared (NIR) spectroscopy was used for the rapid and non-destructive determination of the content of a hormone steroid in single intact tablets. Tablets produced for clinical trial purposes containing 5, 10, 15, 20 and 30 mg (2.94, 5.88, 8.82, 11.76 and 17.64% m/m, respectively)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2001-12, Vol.126 (12), p.2207-2211
Hauptverfasser: BROAD, Neville W, JEE, Roger D, MOFFAT, Anthony C, SMITH, Mark R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transmission near-infrared (NIR) spectroscopy was used for the rapid and non-destructive determination of the content of a hormone steroid in single intact tablets. Tablets produced for clinical trial purposes containing 5, 10, 15, 20 and 30 mg (2.94, 5.88, 8.82, 11.76 and 17.64% m/m, respectively) were used to develop calibration models without the need to specially prepare any out of specification tablets. Reference values for the individual tablets used in the NIR calibration models and test set were measured by reversed-phase high performance liquid chromatography (HPLC). Partial least squares regression using standard normal variate transformed second-derivative spectra over the range 800 to 1040 nm gave the optimum calibration model with a standard error of calibration of 0.52 mg per tablet. Measurements of an independent test set gave comparable results (standard error of prediction 0.31 mg per tablet). Measurement errors for a single tablet (RSD < 2.5% for a given active level) were sufficiently small to allow the procedure to be applied to pharmacopoeial uniformity of content testing of batches of these tablets and permitted the non-destructive testing of 30 tablets in under 20 min as compared to 6 h by HPLC.
ISSN:0003-2654
1364-5528
DOI:10.1039/b106741a