A Method for Detecting Chaos in Canine Myocardial Microcirculatory Red Cell Flux

ABSTRACT Objective: To determine whether red cell movement, as measured by laser Doppler velocimetry, in the capillary net of the beating heart is chaotic. Methods: Using two dog hearts, in situ red blood cell flux was measured at many sites. Simultaneously, epicardial arterial flow and left ventric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microcirculation (New York, N.Y. 1994) N.Y. 1994), 2000-10, Vol.7 (5), p.335-346
Hauptverfasser: BARCLAY, KATHERINE D., KLASSEN, GERALD A., YOUNG, CHARLES
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 5
container_start_page 335
container_title Microcirculation (New York, N.Y. 1994)
container_volume 7
creator BARCLAY, KATHERINE D.
KLASSEN, GERALD A.
YOUNG, CHARLES
description ABSTRACT Objective: To determine whether red cell movement, as measured by laser Doppler velocimetry, in the capillary net of the beating heart is chaotic. Methods: Using two dog hearts, in situ red blood cell flux was measured at many sites. Simultaneously, epicardial arterial flow and left ventricular pressure were recorded via transit‐time flowmeter and catheter manometer, respectively. The presence or absence of chaos was tested by two methods: Lyapunov exponents and correlation dimension. Results: For capillary red cell flux, the Lyapunov was strongly positive at most sites. It was less so for coronary arterial flow and least for left ventricular pressure. Correlation dimension calculation was less able to distinguish the presence or absence of chaos in capillary red cell tissue flux, coronary arterial flow, and left ventricular pressure. Conclusions: Capillary red cell flux (movement of red cells in capillaries) is nonlinear, (i.e., chaotic). This complexity suggests that the primary control for oxygen delivery to cardiac myocytes by red blood cells resides in the microcirculation. Also, capillary red cell flux is bifractal, suggesting an ordering of control.
doi_str_mv 10.1111/j.1549-8719.2000.tb00132.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72420107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72420107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3242-9a267900997d48a9293bf3521c15d7156d249ae8470ffea0072b64bff36eac3c3</originalsourceid><addsrcrecordid>eNqVkF1LwzAUhoMoOqd_QYIX3rXmo20ab0Q6p8KmIorgTUjT1GV27Uxa3P69KRvz2tzkwHnPcw4PAOcYhdi_y3mI44gHKcM8JAihsM0RwpSEqz0w2LX2fY0YDXiSpkfg2Lm5j6Yp4YfgCPsOJzEegOcbONXtrClg2Vg40q1Wrak_YTaTjYOmhpmsTa3hdN0oaQsjKzg1yjbKWNVVsm3sGr7oAma6quC46lYn4KCUldOn238I3sa3r9l9MHm6e8huJoGiJCIBlyRhHCHOWRGlkhNO85LGBCscFwzHSUEiLnUaMVSWWiLESJ5EeVnSREtFFR2Ciw13aZvvTrtWLIxT_gpZ66ZzgvktqBcwBFeboL_aOatLsbRmIe1aYCR6n2IuemmilyZ6n2LrU6z88Nl2S5cvdPE3uhXoA9ebwI-p9PofaDF9yDJfeUKwIRjX6tWOIO2XSBhlsXh_vBNkREbp80cmOP0FaZGTLA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72420107</pqid></control><display><type>article</type><title>A Method for Detecting Chaos in Canine Myocardial Microcirculatory Red Cell Flux</title><source>Wiley-Blackwell Journals</source><source>Taylor &amp; Francis Online</source><source>MEDLINE</source><creator>BARCLAY, KATHERINE D. ; KLASSEN, GERALD A. ; YOUNG, CHARLES</creator><creatorcontrib>BARCLAY, KATHERINE D. ; KLASSEN, GERALD A. ; YOUNG, CHARLES</creatorcontrib><description>ABSTRACT Objective: To determine whether red cell movement, as measured by laser Doppler velocimetry, in the capillary net of the beating heart is chaotic. Methods: Using two dog hearts, in situ red blood cell flux was measured at many sites. Simultaneously, epicardial arterial flow and left ventricular pressure were recorded via transit‐time flowmeter and catheter manometer, respectively. The presence or absence of chaos was tested by two methods: Lyapunov exponents and correlation dimension. Results: For capillary red cell flux, the Lyapunov was strongly positive at most sites. It was less so for coronary arterial flow and least for left ventricular pressure. Correlation dimension calculation was less able to distinguish the presence or absence of chaos in capillary red cell tissue flux, coronary arterial flow, and left ventricular pressure. Conclusions: Capillary red cell flux (movement of red cells in capillaries) is nonlinear, (i.e., chaotic). This complexity suggests that the primary control for oxygen delivery to cardiac myocytes by red blood cells resides in the microcirculation. Also, capillary red cell flux is bifractal, suggesting an ordering of control.</description><identifier>ISSN: 1073-9688</identifier><identifier>EISSN: 1549-8719</identifier><identifier>DOI: 10.1111/j.1549-8719.2000.tb00132.x</identifier><identifier>PMID: 11079251</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Blood Pressure ; coronary circulation ; Coronary Circulation - physiology ; Coronary Vessels - cytology ; Coronary Vessels - physiology ; correlation dimensions ; Dogs ; Erythrocytes - physiology ; Fractals ; Heart Ventricles - cytology ; laser Doppler velocimeter ; Laser-Doppler Flowmetry ; Lyapunov exponents ; Microcirculation - cytology ; Microcirculation - physiology ; Nonlinear Dynamics ; Statistics as Topic ; Ventricular Function</subject><ispartof>Microcirculation (New York, N.Y. 1994), 2000-10, Vol.7 (5), p.335-346</ispartof><rights>2000 Blackwell</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3242-9a267900997d48a9293bf3521c15d7156d249ae8470ffea0072b64bff36eac3c3</citedby><cites>FETCH-LOGICAL-c3242-9a267900997d48a9293bf3521c15d7156d249ae8470ffea0072b64bff36eac3c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1549-8719.2000.tb00132.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1549-8719.2000.tb00132.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11079251$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>BARCLAY, KATHERINE D.</creatorcontrib><creatorcontrib>KLASSEN, GERALD A.</creatorcontrib><creatorcontrib>YOUNG, CHARLES</creatorcontrib><title>A Method for Detecting Chaos in Canine Myocardial Microcirculatory Red Cell Flux</title><title>Microcirculation (New York, N.Y. 1994)</title><addtitle>Microcirculation</addtitle><description>ABSTRACT Objective: To determine whether red cell movement, as measured by laser Doppler velocimetry, in the capillary net of the beating heart is chaotic. Methods: Using two dog hearts, in situ red blood cell flux was measured at many sites. Simultaneously, epicardial arterial flow and left ventricular pressure were recorded via transit‐time flowmeter and catheter manometer, respectively. The presence or absence of chaos was tested by two methods: Lyapunov exponents and correlation dimension. Results: For capillary red cell flux, the Lyapunov was strongly positive at most sites. It was less so for coronary arterial flow and least for left ventricular pressure. Correlation dimension calculation was less able to distinguish the presence or absence of chaos in capillary red cell tissue flux, coronary arterial flow, and left ventricular pressure. Conclusions: Capillary red cell flux (movement of red cells in capillaries) is nonlinear, (i.e., chaotic). This complexity suggests that the primary control for oxygen delivery to cardiac myocytes by red blood cells resides in the microcirculation. Also, capillary red cell flux is bifractal, suggesting an ordering of control.</description><subject>Animals</subject><subject>Blood Pressure</subject><subject>coronary circulation</subject><subject>Coronary Circulation - physiology</subject><subject>Coronary Vessels - cytology</subject><subject>Coronary Vessels - physiology</subject><subject>correlation dimensions</subject><subject>Dogs</subject><subject>Erythrocytes - physiology</subject><subject>Fractals</subject><subject>Heart Ventricles - cytology</subject><subject>laser Doppler velocimeter</subject><subject>Laser-Doppler Flowmetry</subject><subject>Lyapunov exponents</subject><subject>Microcirculation - cytology</subject><subject>Microcirculation - physiology</subject><subject>Nonlinear Dynamics</subject><subject>Statistics as Topic</subject><subject>Ventricular Function</subject><issn>1073-9688</issn><issn>1549-8719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkF1LwzAUhoMoOqd_QYIX3rXmo20ab0Q6p8KmIorgTUjT1GV27Uxa3P69KRvz2tzkwHnPcw4PAOcYhdi_y3mI44gHKcM8JAihsM0RwpSEqz0w2LX2fY0YDXiSpkfg2Lm5j6Yp4YfgCPsOJzEegOcbONXtrClg2Vg40q1Wrak_YTaTjYOmhpmsTa3hdN0oaQsjKzg1yjbKWNVVsm3sGr7oAma6quC46lYn4KCUldOn238I3sa3r9l9MHm6e8huJoGiJCIBlyRhHCHOWRGlkhNO85LGBCscFwzHSUEiLnUaMVSWWiLESJ5EeVnSREtFFR2Ciw13aZvvTrtWLIxT_gpZ66ZzgvktqBcwBFeboL_aOatLsbRmIe1aYCR6n2IuemmilyZ6n2LrU6z88Nl2S5cvdPE3uhXoA9ebwI-p9PofaDF9yDJfeUKwIRjX6tWOIO2XSBhlsXh_vBNkREbp80cmOP0FaZGTLA</recordid><startdate>200010</startdate><enddate>200010</enddate><creator>BARCLAY, KATHERINE D.</creator><creator>KLASSEN, GERALD A.</creator><creator>YOUNG, CHARLES</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200010</creationdate><title>A Method for Detecting Chaos in Canine Myocardial Microcirculatory Red Cell Flux</title><author>BARCLAY, KATHERINE D. ; KLASSEN, GERALD A. ; YOUNG, CHARLES</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3242-9a267900997d48a9293bf3521c15d7156d249ae8470ffea0072b64bff36eac3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Blood Pressure</topic><topic>coronary circulation</topic><topic>Coronary Circulation - physiology</topic><topic>Coronary Vessels - cytology</topic><topic>Coronary Vessels - physiology</topic><topic>correlation dimensions</topic><topic>Dogs</topic><topic>Erythrocytes - physiology</topic><topic>Fractals</topic><topic>Heart Ventricles - cytology</topic><topic>laser Doppler velocimeter</topic><topic>Laser-Doppler Flowmetry</topic><topic>Lyapunov exponents</topic><topic>Microcirculation - cytology</topic><topic>Microcirculation - physiology</topic><topic>Nonlinear Dynamics</topic><topic>Statistics as Topic</topic><topic>Ventricular Function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BARCLAY, KATHERINE D.</creatorcontrib><creatorcontrib>KLASSEN, GERALD A.</creatorcontrib><creatorcontrib>YOUNG, CHARLES</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Microcirculation (New York, N.Y. 1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BARCLAY, KATHERINE D.</au><au>KLASSEN, GERALD A.</au><au>YOUNG, CHARLES</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Detecting Chaos in Canine Myocardial Microcirculatory Red Cell Flux</atitle><jtitle>Microcirculation (New York, N.Y. 1994)</jtitle><addtitle>Microcirculation</addtitle><date>2000-10</date><risdate>2000</risdate><volume>7</volume><issue>5</issue><spage>335</spage><epage>346</epage><pages>335-346</pages><issn>1073-9688</issn><eissn>1549-8719</eissn><abstract>ABSTRACT Objective: To determine whether red cell movement, as measured by laser Doppler velocimetry, in the capillary net of the beating heart is chaotic. Methods: Using two dog hearts, in situ red blood cell flux was measured at many sites. Simultaneously, epicardial arterial flow and left ventricular pressure were recorded via transit‐time flowmeter and catheter manometer, respectively. The presence or absence of chaos was tested by two methods: Lyapunov exponents and correlation dimension. Results: For capillary red cell flux, the Lyapunov was strongly positive at most sites. It was less so for coronary arterial flow and least for left ventricular pressure. Correlation dimension calculation was less able to distinguish the presence or absence of chaos in capillary red cell tissue flux, coronary arterial flow, and left ventricular pressure. Conclusions: Capillary red cell flux (movement of red cells in capillaries) is nonlinear, (i.e., chaotic). This complexity suggests that the primary control for oxygen delivery to cardiac myocytes by red blood cells resides in the microcirculation. Also, capillary red cell flux is bifractal, suggesting an ordering of control.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>11079251</pmid><doi>10.1111/j.1549-8719.2000.tb00132.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-9688
ispartof Microcirculation (New York, N.Y. 1994), 2000-10, Vol.7 (5), p.335-346
issn 1073-9688
1549-8719
language eng
recordid cdi_proquest_miscellaneous_72420107
source Wiley-Blackwell Journals; Taylor & Francis Online; MEDLINE
subjects Animals
Blood Pressure
coronary circulation
Coronary Circulation - physiology
Coronary Vessels - cytology
Coronary Vessels - physiology
correlation dimensions
Dogs
Erythrocytes - physiology
Fractals
Heart Ventricles - cytology
laser Doppler velocimeter
Laser-Doppler Flowmetry
Lyapunov exponents
Microcirculation - cytology
Microcirculation - physiology
Nonlinear Dynamics
Statistics as Topic
Ventricular Function
title A Method for Detecting Chaos in Canine Myocardial Microcirculatory Red Cell Flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A35%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Detecting%20Chaos%20in%20Canine%20Myocardial%20Microcirculatory%20Red%20Cell%20Flux&rft.jtitle=Microcirculation%20(New%20York,%20N.Y.%201994)&rft.au=BARCLAY,%20KATHERINE%20D.&rft.date=2000-10&rft.volume=7&rft.issue=5&rft.spage=335&rft.epage=346&rft.pages=335-346&rft.issn=1073-9688&rft.eissn=1549-8719&rft_id=info:doi/10.1111/j.1549-8719.2000.tb00132.x&rft_dat=%3Cproquest_cross%3E72420107%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72420107&rft_id=info:pmid/11079251&rfr_iscdi=true