[18] Molecular applications of fusions to leucine zippers

The use of chimeric proteins to study protein function dates back as far as the use of illegitimate recombination events among lambdoid phage to generate interspecies variants containing different amounts of polypeptide derived from each parent. Recombinant deoxyribonucleic acid (DNA) methods made t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in Enzymology 2000, Vol.328, p.282-296
Hauptverfasser: Rieker, Jennifer D., Hu, James C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 296
container_issue
container_start_page 282
container_title Methods in Enzymology
container_volume 328
creator Rieker, Jennifer D.
Hu, James C.
description The use of chimeric proteins to study protein function dates back as far as the use of illegitimate recombination events among lambdoid phage to generate interspecies variants containing different amounts of polypeptide derived from each parent. Recombinant deoxyribonucleic acid (DNA) methods made the use of fusion proteins more easily generalizable and allowed fundamentally important insights to be derived for many biological systems. For example, understanding of transcriptional activation was fundamentally altered by the experiments of Brent and Ptashne, who showed that targeting of an activation domain to a particular chromosomal location through a fused bacterial LexA DNA-binding protein was sufficient to activate transcription. There are now many ways to use fused motifs to hold proteins together. This chapter briefly discusses the use of natural and mutant leucine zippers as molecular damps.
doi_str_mv 10.1016/S0076-6879(00)28403-6
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72407613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0076687900284036</els_id><sourcerecordid>72407613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-50a361bd421171c5777811b6ad65019ce7c0ff430ea39f8f15fba04b4c4b4e0a3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMfuMu6P0HpSfRQnUmaJj2JLH7Bigf1JBLSdAqRblubVtBfb3ddHRhmDu87zPswdoRwjoDpxROASuNUq-wU4IzrBESc7rApSqlilWm9y-aZ0oAcNec8E3ts-m-ZsHkI7zAWQiIzfsAmiKCkkDhl2Svqt-ihqcgNle0i27aVd7b3TR2ipozKIWzWvokqGpyvKfr2bUtdOGT7pa0Czbdzxl5urp8Xd_Hy8fZ-cbWMHRfQxxKsSDEvEo6o0EmllEbMU1ukEjBzpByUZSKArMhKXaIscwtJnrixaTTP2Mnv3bZrPgYKvVn54KiqbE3NEIziyZgUxSg83gqHfEWFaTu_st2X-Qs7Ci5_BTS---mpM8F5qh0VviPXm6LxBsGsiZsNcbPGZwDMhrhJxQ_A1G3C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72407613</pqid></control><display><type>article</type><title>[18] Molecular applications of fusions to leucine zippers</title><source>ScienceDirect eBooks</source><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rieker, Jennifer D. ; Hu, James C.</creator><creatorcontrib>Rieker, Jennifer D. ; Hu, James C.</creatorcontrib><description>The use of chimeric proteins to study protein function dates back as far as the use of illegitimate recombination events among lambdoid phage to generate interspecies variants containing different amounts of polypeptide derived from each parent. Recombinant deoxyribonucleic acid (DNA) methods made the use of fusion proteins more easily generalizable and allowed fundamentally important insights to be derived for many biological systems. For example, understanding of transcriptional activation was fundamentally altered by the experiments of Brent and Ptashne, who showed that targeting of an activation domain to a particular chromosomal location through a fused bacterial LexA DNA-binding protein was sufficient to activate transcription. There are now many ways to use fused motifs to hold proteins together. This chapter briefly discusses the use of natural and mutant leucine zippers as molecular damps.</description><identifier>ISSN: 0076-6879</identifier><identifier>ISBN: 9780121822293</identifier><identifier>ISBN: 012182229X</identifier><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/S0076-6879(00)28403-6</identifier><identifier>PMID: 11075351</identifier><language>eng</language><publisher>United States: Elsevier Science &amp; Technology</publisher><subject>Amino Acid Sequence ; Animals ; Cloning, Molecular - methods ; Dimerization ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Leucine Zippers ; Molecular Sequence Data ; Polymerase Chain Reaction - methods ; Protein Kinases - chemistry ; Protein Kinases - genetics ; Protein Multimerization ; Protein Structure, Secondary ; Proto-Oncogene Proteins c-fos - chemistry ; Proto-Oncogene Proteins c-jun - chemistry ; Recombinant Fusion Proteins - biosynthesis ; Recombinant Fusion Proteins - chemistry ; Saccharomyces cerevisiae Proteins</subject><ispartof>Methods in Enzymology, 2000, Vol.328, p.282-296</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-50a361bd421171c5777811b6ad65019ce7c0ff430ea39f8f15fba04b4c4b4e0a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0076687900284036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,775,776,780,789,3446,3537,4010,11267,27900,27901,27902,45786,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11075351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rieker, Jennifer D.</creatorcontrib><creatorcontrib>Hu, James C.</creatorcontrib><title>[18] Molecular applications of fusions to leucine zippers</title><title>Methods in Enzymology</title><addtitle>Methods Enzymol</addtitle><description>The use of chimeric proteins to study protein function dates back as far as the use of illegitimate recombination events among lambdoid phage to generate interspecies variants containing different amounts of polypeptide derived from each parent. Recombinant deoxyribonucleic acid (DNA) methods made the use of fusion proteins more easily generalizable and allowed fundamentally important insights to be derived for many biological systems. For example, understanding of transcriptional activation was fundamentally altered by the experiments of Brent and Ptashne, who showed that targeting of an activation domain to a particular chromosomal location through a fused bacterial LexA DNA-binding protein was sufficient to activate transcription. There are now many ways to use fused motifs to hold proteins together. This chapter briefly discusses the use of natural and mutant leucine zippers as molecular damps.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Cloning, Molecular - methods</subject><subject>Dimerization</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Leucine Zippers</subject><subject>Molecular Sequence Data</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - genetics</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Secondary</subject><subject>Proto-Oncogene Proteins c-fos - chemistry</subject><subject>Proto-Oncogene Proteins c-jun - chemistry</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins</subject><issn>0076-6879</issn><issn>1557-7988</issn><isbn>9780121822293</isbn><isbn>012182229X</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1LxDAQhoMfuMu6P0HpSfRQnUmaJj2JLH7Bigf1JBLSdAqRblubVtBfb3ddHRhmDu87zPswdoRwjoDpxROASuNUq-wU4IzrBESc7rApSqlilWm9y-aZ0oAcNec8E3ts-m-ZsHkI7zAWQiIzfsAmiKCkkDhl2Svqt-ihqcgNle0i27aVd7b3TR2ipozKIWzWvokqGpyvKfr2bUtdOGT7pa0Czbdzxl5urp8Xd_Hy8fZ-cbWMHRfQxxKsSDEvEo6o0EmllEbMU1ukEjBzpByUZSKArMhKXaIscwtJnrixaTTP2Mnv3bZrPgYKvVn54KiqbE3NEIziyZgUxSg83gqHfEWFaTu_st2X-Qs7Ci5_BTS---mpM8F5qh0VviPXm6LxBsGsiZsNcbPGZwDMhrhJxQ_A1G3C</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Rieker, Jennifer D.</creator><creator>Hu, James C.</creator><general>Elsevier Science &amp; Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2000</creationdate><title>[18] Molecular applications of fusions to leucine zippers</title><author>Rieker, Jennifer D. ; Hu, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-50a361bd421171c5777811b6ad65019ce7c0ff430ea39f8f15fba04b4c4b4e0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Cloning, Molecular - methods</topic><topic>Dimerization</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Leucine Zippers</topic><topic>Molecular Sequence Data</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - genetics</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Secondary</topic><topic>Proto-Oncogene Proteins c-fos - chemistry</topic><topic>Proto-Oncogene Proteins c-jun - chemistry</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rieker, Jennifer D.</creatorcontrib><creatorcontrib>Hu, James C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Methods in Enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rieker, Jennifer D.</au><au>Hu, James C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[18] Molecular applications of fusions to leucine zippers</atitle><jtitle>Methods in Enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>2000</date><risdate>2000</risdate><volume>328</volume><spage>282</spage><epage>296</epage><pages>282-296</pages><issn>0076-6879</issn><eissn>1557-7988</eissn><isbn>9780121822293</isbn><isbn>012182229X</isbn><abstract>The use of chimeric proteins to study protein function dates back as far as the use of illegitimate recombination events among lambdoid phage to generate interspecies variants containing different amounts of polypeptide derived from each parent. Recombinant deoxyribonucleic acid (DNA) methods made the use of fusion proteins more easily generalizable and allowed fundamentally important insights to be derived for many biological systems. For example, understanding of transcriptional activation was fundamentally altered by the experiments of Brent and Ptashne, who showed that targeting of an activation domain to a particular chromosomal location through a fused bacterial LexA DNA-binding protein was sufficient to activate transcription. There are now many ways to use fused motifs to hold proteins together. This chapter briefly discusses the use of natural and mutant leucine zippers as molecular damps.</abstract><cop>United States</cop><pub>Elsevier Science &amp; Technology</pub><pmid>11075351</pmid><doi>10.1016/S0076-6879(00)28403-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0076-6879
ispartof Methods in Enzymology, 2000, Vol.328, p.282-296
issn 0076-6879
1557-7988
language eng
recordid cdi_proquest_miscellaneous_72407613
source ScienceDirect eBooks; MEDLINE; Elsevier ScienceDirect Journals
subjects Amino Acid Sequence
Animals
Cloning, Molecular - methods
Dimerization
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
Fungal Proteins - chemistry
Fungal Proteins - genetics
Leucine Zippers
Molecular Sequence Data
Polymerase Chain Reaction - methods
Protein Kinases - chemistry
Protein Kinases - genetics
Protein Multimerization
Protein Structure, Secondary
Proto-Oncogene Proteins c-fos - chemistry
Proto-Oncogene Proteins c-jun - chemistry
Recombinant Fusion Proteins - biosynthesis
Recombinant Fusion Proteins - chemistry
Saccharomyces cerevisiae Proteins
title [18] Molecular applications of fusions to leucine zippers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5B18%5D%20Molecular%20applications%20of%20fusions%20to%20leucine%20zippers&rft.jtitle=Methods%20in%20Enzymology&rft.au=Rieker,%20Jennifer%20D.&rft.date=2000&rft.volume=328&rft.spage=282&rft.epage=296&rft.pages=282-296&rft.issn=0076-6879&rft.eissn=1557-7988&rft.isbn=9780121822293&rft.isbn_list=012182229X&rft_id=info:doi/10.1016/S0076-6879(00)28403-6&rft_dat=%3Cproquest_pubme%3E72407613%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72407613&rft_id=info:pmid/11075351&rft_els_id=S0076687900284036&rfr_iscdi=true