[18] Molecular applications of fusions to leucine zippers
The use of chimeric proteins to study protein function dates back as far as the use of illegitimate recombination events among lambdoid phage to generate interspecies variants containing different amounts of polypeptide derived from each parent. Recombinant deoxyribonucleic acid (DNA) methods made t...
Gespeichert in:
Veröffentlicht in: | Methods in Enzymology 2000, Vol.328, p.282-296 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 296 |
---|---|
container_issue | |
container_start_page | 282 |
container_title | Methods in Enzymology |
container_volume | 328 |
creator | Rieker, Jennifer D. Hu, James C. |
description | The use of chimeric proteins to study protein function dates back as far as the use of illegitimate recombination events among lambdoid phage to generate interspecies variants containing different amounts of polypeptide derived from each parent. Recombinant deoxyribonucleic acid (DNA) methods made the use of fusion proteins more easily generalizable and allowed fundamentally important insights to be derived for many biological systems. For example, understanding of transcriptional activation was fundamentally altered by the experiments of Brent and Ptashne, who showed that targeting of an activation domain to a particular chromosomal location through a fused bacterial LexA DNA-binding protein was sufficient to activate transcription. There are now many ways to use fused motifs to hold proteins together. This chapter briefly discusses the use of natural and mutant leucine zippers as molecular damps. |
doi_str_mv | 10.1016/S0076-6879(00)28403-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72407613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0076687900284036</els_id><sourcerecordid>72407613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-50a361bd421171c5777811b6ad65019ce7c0ff430ea39f8f15fba04b4c4b4e0a3</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMfuMu6P0HpSfRQnUmaJj2JLH7Bigf1JBLSdAqRblubVtBfb3ddHRhmDu87zPswdoRwjoDpxROASuNUq-wU4IzrBESc7rApSqlilWm9y-aZ0oAcNec8E3ts-m-ZsHkI7zAWQiIzfsAmiKCkkDhl2Svqt-ihqcgNle0i27aVd7b3TR2ipozKIWzWvokqGpyvKfr2bUtdOGT7pa0Czbdzxl5urp8Xd_Hy8fZ-cbWMHRfQxxKsSDEvEo6o0EmllEbMU1ukEjBzpByUZSKArMhKXaIscwtJnrixaTTP2Mnv3bZrPgYKvVn54KiqbE3NEIziyZgUxSg83gqHfEWFaTu_st2X-Qs7Ci5_BTS---mpM8F5qh0VviPXm6LxBsGsiZsNcbPGZwDMhrhJxQ_A1G3C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72407613</pqid></control><display><type>article</type><title>[18] Molecular applications of fusions to leucine zippers</title><source>ScienceDirect eBooks</source><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rieker, Jennifer D. ; Hu, James C.</creator><creatorcontrib>Rieker, Jennifer D. ; Hu, James C.</creatorcontrib><description>The use of chimeric proteins to study protein function dates back as far as the use of illegitimate recombination events among lambdoid phage to generate interspecies variants containing different amounts of polypeptide derived from each parent. Recombinant deoxyribonucleic acid (DNA) methods made the use of fusion proteins more easily generalizable and allowed fundamentally important insights to be derived for many biological systems. For example, understanding of transcriptional activation was fundamentally altered by the experiments of Brent and Ptashne, who showed that targeting of an activation domain to a particular chromosomal location through a fused bacterial LexA DNA-binding protein was sufficient to activate transcription. There are now many ways to use fused motifs to hold proteins together. This chapter briefly discusses the use of natural and mutant leucine zippers as molecular damps.</description><identifier>ISSN: 0076-6879</identifier><identifier>ISBN: 9780121822293</identifier><identifier>ISBN: 012182229X</identifier><identifier>EISSN: 1557-7988</identifier><identifier>DOI: 10.1016/S0076-6879(00)28403-6</identifier><identifier>PMID: 11075351</identifier><language>eng</language><publisher>United States: Elsevier Science & Technology</publisher><subject>Amino Acid Sequence ; Animals ; Cloning, Molecular - methods ; Dimerization ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Leucine Zippers ; Molecular Sequence Data ; Polymerase Chain Reaction - methods ; Protein Kinases - chemistry ; Protein Kinases - genetics ; Protein Multimerization ; Protein Structure, Secondary ; Proto-Oncogene Proteins c-fos - chemistry ; Proto-Oncogene Proteins c-jun - chemistry ; Recombinant Fusion Proteins - biosynthesis ; Recombinant Fusion Proteins - chemistry ; Saccharomyces cerevisiae Proteins</subject><ispartof>Methods in Enzymology, 2000, Vol.328, p.282-296</ispartof><rights>2000 Academic Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230t-50a361bd421171c5777811b6ad65019ce7c0ff430ea39f8f15fba04b4c4b4e0a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0076687900284036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,775,776,780,789,3446,3537,4010,11267,27900,27901,27902,45786,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11075351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rieker, Jennifer D.</creatorcontrib><creatorcontrib>Hu, James C.</creatorcontrib><title>[18] Molecular applications of fusions to leucine zippers</title><title>Methods in Enzymology</title><addtitle>Methods Enzymol</addtitle><description>The use of chimeric proteins to study protein function dates back as far as the use of illegitimate recombination events among lambdoid phage to generate interspecies variants containing different amounts of polypeptide derived from each parent. Recombinant deoxyribonucleic acid (DNA) methods made the use of fusion proteins more easily generalizable and allowed fundamentally important insights to be derived for many biological systems. For example, understanding of transcriptional activation was fundamentally altered by the experiments of Brent and Ptashne, who showed that targeting of an activation domain to a particular chromosomal location through a fused bacterial LexA DNA-binding protein was sufficient to activate transcription. There are now many ways to use fused motifs to hold proteins together. This chapter briefly discusses the use of natural and mutant leucine zippers as molecular damps.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Cloning, Molecular - methods</subject><subject>Dimerization</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Leucine Zippers</subject><subject>Molecular Sequence Data</subject><subject>Polymerase Chain Reaction - methods</subject><subject>Protein Kinases - chemistry</subject><subject>Protein Kinases - genetics</subject><subject>Protein Multimerization</subject><subject>Protein Structure, Secondary</subject><subject>Proto-Oncogene Proteins c-fos - chemistry</subject><subject>Proto-Oncogene Proteins c-jun - chemistry</subject><subject>Recombinant Fusion Proteins - biosynthesis</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins</subject><issn>0076-6879</issn><issn>1557-7988</issn><isbn>9780121822293</isbn><isbn>012182229X</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kE1LxDAQhoMfuMu6P0HpSfRQnUmaJj2JLH7Bigf1JBLSdAqRblubVtBfb3ddHRhmDu87zPswdoRwjoDpxROASuNUq-wU4IzrBESc7rApSqlilWm9y-aZ0oAcNec8E3ts-m-ZsHkI7zAWQiIzfsAmiKCkkDhl2Svqt-ihqcgNle0i27aVd7b3TR2ipozKIWzWvokqGpyvKfr2bUtdOGT7pa0Czbdzxl5urp8Xd_Hy8fZ-cbWMHRfQxxKsSDEvEo6o0EmllEbMU1ukEjBzpByUZSKArMhKXaIscwtJnrixaTTP2Mnv3bZrPgYKvVn54KiqbE3NEIziyZgUxSg83gqHfEWFaTu_st2X-Qs7Ci5_BTS---mpM8F5qh0VviPXm6LxBsGsiZsNcbPGZwDMhrhJxQ_A1G3C</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Rieker, Jennifer D.</creator><creator>Hu, James C.</creator><general>Elsevier Science & Technology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>2000</creationdate><title>[18] Molecular applications of fusions to leucine zippers</title><author>Rieker, Jennifer D. ; Hu, James C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-50a361bd421171c5777811b6ad65019ce7c0ff430ea39f8f15fba04b4c4b4e0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Cloning, Molecular - methods</topic><topic>Dimerization</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Leucine Zippers</topic><topic>Molecular Sequence Data</topic><topic>Polymerase Chain Reaction - methods</topic><topic>Protein Kinases - chemistry</topic><topic>Protein Kinases - genetics</topic><topic>Protein Multimerization</topic><topic>Protein Structure, Secondary</topic><topic>Proto-Oncogene Proteins c-fos - chemistry</topic><topic>Proto-Oncogene Proteins c-jun - chemistry</topic><topic>Recombinant Fusion Proteins - biosynthesis</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rieker, Jennifer D.</creatorcontrib><creatorcontrib>Hu, James C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Methods in Enzymology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rieker, Jennifer D.</au><au>Hu, James C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>[18] Molecular applications of fusions to leucine zippers</atitle><jtitle>Methods in Enzymology</jtitle><addtitle>Methods Enzymol</addtitle><date>2000</date><risdate>2000</risdate><volume>328</volume><spage>282</spage><epage>296</epage><pages>282-296</pages><issn>0076-6879</issn><eissn>1557-7988</eissn><isbn>9780121822293</isbn><isbn>012182229X</isbn><abstract>The use of chimeric proteins to study protein function dates back as far as the use of illegitimate recombination events among lambdoid phage to generate interspecies variants containing different amounts of polypeptide derived from each parent. Recombinant deoxyribonucleic acid (DNA) methods made the use of fusion proteins more easily generalizable and allowed fundamentally important insights to be derived for many biological systems. For example, understanding of transcriptional activation was fundamentally altered by the experiments of Brent and Ptashne, who showed that targeting of an activation domain to a particular chromosomal location through a fused bacterial LexA DNA-binding protein was sufficient to activate transcription. There are now many ways to use fused motifs to hold proteins together. This chapter briefly discusses the use of natural and mutant leucine zippers as molecular damps.</abstract><cop>United States</cop><pub>Elsevier Science & Technology</pub><pmid>11075351</pmid><doi>10.1016/S0076-6879(00)28403-6</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0076-6879 |
ispartof | Methods in Enzymology, 2000, Vol.328, p.282-296 |
issn | 0076-6879 1557-7988 |
language | eng |
recordid | cdi_proquest_miscellaneous_72407613 |
source | ScienceDirect eBooks; MEDLINE; Elsevier ScienceDirect Journals |
subjects | Amino Acid Sequence Animals Cloning, Molecular - methods Dimerization DNA-Binding Proteins - chemistry DNA-Binding Proteins - genetics Fungal Proteins - chemistry Fungal Proteins - genetics Leucine Zippers Molecular Sequence Data Polymerase Chain Reaction - methods Protein Kinases - chemistry Protein Kinases - genetics Protein Multimerization Protein Structure, Secondary Proto-Oncogene Proteins c-fos - chemistry Proto-Oncogene Proteins c-jun - chemistry Recombinant Fusion Proteins - biosynthesis Recombinant Fusion Proteins - chemistry Saccharomyces cerevisiae Proteins |
title | [18] Molecular applications of fusions to leucine zippers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T23%3A14%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%5B18%5D%20Molecular%20applications%20of%20fusions%20to%20leucine%20zippers&rft.jtitle=Methods%20in%20Enzymology&rft.au=Rieker,%20Jennifer%20D.&rft.date=2000&rft.volume=328&rft.spage=282&rft.epage=296&rft.pages=282-296&rft.issn=0076-6879&rft.eissn=1557-7988&rft.isbn=9780121822293&rft.isbn_list=012182229X&rft_id=info:doi/10.1016/S0076-6879(00)28403-6&rft_dat=%3Cproquest_pubme%3E72407613%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72407613&rft_id=info:pmid/11075351&rft_els_id=S0076687900284036&rfr_iscdi=true |