Effect of vehicles and enhancers on the in vitro skin penetration of aspalatone and its enzymatic degradation across rat skins

The feasibility of skin penetration was studied for aspalatone (AM, acetylsalicylic acid maltol ester), a novel antithrombotic agent. In this study, hairless mouse dorsal skins were used as a model to select composition of vehicle and AM. Based on measurements of solubility and partition coefficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of pharmacal research 2001-12, Vol.24 (6), p.572-577
Hauptverfasser: Gwak, H S, Chun, I K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 577
container_issue 6
container_start_page 572
container_title Archives of pharmacal research
container_volume 24
creator Gwak, H S
Chun, I K
description The feasibility of skin penetration was studied for aspalatone (AM, acetylsalicylic acid maltol ester), a novel antithrombotic agent. In this study, hairless mouse dorsal skins were used as a model to select composition of vehicle and AM. Based on measurements of solubility and partition coefficient, the concentration of PG that showed the highest flux for AM across the hairless mouse skin was found to be 40%. The cumulative amount permeated at 48 h, however, appear inadequate, even when the PG concentration was employed. To identify a suitable absorption enhancer and its optimal concentration for AM, a number of absorption enhancers and a variety of concentration were screened for the increase in transdermal flux of AM. Amongst these, linoleic acid (LOA) at the concentration of 5% was found to have the largest enhancement factor (i.e., 132). However, a further increase in AM flux was not found in the fatty acid concentration greater than 5%, indicating the enhancement effect is in a bell-shaped curve. In a study of the effect of AM concentration on the permeation, there was no difference in the permeation rate between 0.5 and 1% for AM, below its saturated concentration. At the donor concentration of 2%, over the saturated condition, the flux of AM was markedly increased. A considerable degradation of AM was found during permeation studies, and the extent was correlated with protein concentrations in the epidermal and serosal extracts, and skin homogenates. In rat dorsal skins, the protein concentration decreased in the rank order of skin homogenate > serosal extract > epidermal extract. Estimated first order degradation rate constants were 6.1 5 +/- 0.14, 0.57 +/- 0.02 and 0.011 +/- 0.004 h(-1) for skin homogenate, serosal extract and epidermal extract, respectively. Therefore, it appeared that AM was hydrolyzed to some extent into salicylmaltol by esterases in the dermal and subcutaneous tissues of skin. Taken together, our data indicated that transdermal delivery of AM is feasible when the combination of PG and LOA is used as a vehicle. However, since AM is not metabolically stable, acceptable degradation inhibitors may be necessary to fully realize the transdermal delivery of the drug.
doi_str_mv 10.1007/BF02975168
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72405153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72405153</sourcerecordid><originalsourceid>FETCH-LOGICAL-g232t-958c13215292824e6ba83eb25626aff53ea3c7df43ef9960197fcca9077668ef3</originalsourceid><addsrcrecordid>eNo1kD1PwzAQhj2AaCks_ADkiS3gj9iOR6haQKrEAnPkOuc2kDjFdiuVgd-O1ZbpTrrneaV7Ebqh5J4Soh6e5oRpJaisztCYMMELyaQeocsYPwnhUghxgUaUKl0KXo3R78w5sAkPDu9g3doOIja-weDXxlsIEQ8epzXg1uNdm8KA41deN-AhBZPafM2qiRvTmTR4OMhtijngZ99nwOIGVsE0R9bYMMSIs3nIiVfo3JkuwvVpTtDHfPY-fSkWb8-v08dFsWKcpUKLylLOqGCaVawEuTQVhyUT-TnjnOBguFWNKzk4rSWhWjlrjSZKSVmB4xN0d8zdhOF7CzHVfRstdJ3xMGxjrVhJBBU8g7cncLvsoak3oe1N2Nf_jfE_AbhsUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72405153</pqid></control><display><type>article</type><title>Effect of vehicles and enhancers on the in vitro skin penetration of aspalatone and its enzymatic degradation across rat skins</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Gwak, H S ; Chun, I K</creator><creatorcontrib>Gwak, H S ; Chun, I K</creatorcontrib><description>The feasibility of skin penetration was studied for aspalatone (AM, acetylsalicylic acid maltol ester), a novel antithrombotic agent. In this study, hairless mouse dorsal skins were used as a model to select composition of vehicle and AM. Based on measurements of solubility and partition coefficient, the concentration of PG that showed the highest flux for AM across the hairless mouse skin was found to be 40%. The cumulative amount permeated at 48 h, however, appear inadequate, even when the PG concentration was employed. To identify a suitable absorption enhancer and its optimal concentration for AM, a number of absorption enhancers and a variety of concentration were screened for the increase in transdermal flux of AM. Amongst these, linoleic acid (LOA) at the concentration of 5% was found to have the largest enhancement factor (i.e., 132). However, a further increase in AM flux was not found in the fatty acid concentration greater than 5%, indicating the enhancement effect is in a bell-shaped curve. In a study of the effect of AM concentration on the permeation, there was no difference in the permeation rate between 0.5 and 1% for AM, below its saturated concentration. At the donor concentration of 2%, over the saturated condition, the flux of AM was markedly increased. A considerable degradation of AM was found during permeation studies, and the extent was correlated with protein concentrations in the epidermal and serosal extracts, and skin homogenates. In rat dorsal skins, the protein concentration decreased in the rank order of skin homogenate &gt; serosal extract &gt; epidermal extract. Estimated first order degradation rate constants were 6.1 5 +/- 0.14, 0.57 +/- 0.02 and 0.011 +/- 0.004 h(-1) for skin homogenate, serosal extract and epidermal extract, respectively. Therefore, it appeared that AM was hydrolyzed to some extent into salicylmaltol by esterases in the dermal and subcutaneous tissues of skin. Taken together, our data indicated that transdermal delivery of AM is feasible when the combination of PG and LOA is used as a vehicle. However, since AM is not metabolically stable, acceptable degradation inhibitors may be necessary to fully realize the transdermal delivery of the drug.</description><identifier>ISSN: 0253-6269</identifier><identifier>DOI: 10.1007/BF02975168</identifier><identifier>PMID: 11794538</identifier><language>eng</language><publisher>Korea (South)</publisher><subject>Animals ; Aspirin - analogs &amp; derivatives ; Aspirin - pharmacokinetics ; Fibrinolytic Agents - pharmacokinetics ; Linoleic Acid - pharmacology ; Male ; Mice ; Mice, Hairless ; Pharmaceutical Vehicles ; Rats ; Rats, Sprague-Dawley ; Skin - metabolism ; Skin Absorption ; Species Specificity</subject><ispartof>Archives of pharmacal research, 2001-12, Vol.24 (6), p.572-577</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11794538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gwak, H S</creatorcontrib><creatorcontrib>Chun, I K</creatorcontrib><title>Effect of vehicles and enhancers on the in vitro skin penetration of aspalatone and its enzymatic degradation across rat skins</title><title>Archives of pharmacal research</title><addtitle>Arch Pharm Res</addtitle><description>The feasibility of skin penetration was studied for aspalatone (AM, acetylsalicylic acid maltol ester), a novel antithrombotic agent. In this study, hairless mouse dorsal skins were used as a model to select composition of vehicle and AM. Based on measurements of solubility and partition coefficient, the concentration of PG that showed the highest flux for AM across the hairless mouse skin was found to be 40%. The cumulative amount permeated at 48 h, however, appear inadequate, even when the PG concentration was employed. To identify a suitable absorption enhancer and its optimal concentration for AM, a number of absorption enhancers and a variety of concentration were screened for the increase in transdermal flux of AM. Amongst these, linoleic acid (LOA) at the concentration of 5% was found to have the largest enhancement factor (i.e., 132). However, a further increase in AM flux was not found in the fatty acid concentration greater than 5%, indicating the enhancement effect is in a bell-shaped curve. In a study of the effect of AM concentration on the permeation, there was no difference in the permeation rate between 0.5 and 1% for AM, below its saturated concentration. At the donor concentration of 2%, over the saturated condition, the flux of AM was markedly increased. A considerable degradation of AM was found during permeation studies, and the extent was correlated with protein concentrations in the epidermal and serosal extracts, and skin homogenates. In rat dorsal skins, the protein concentration decreased in the rank order of skin homogenate &gt; serosal extract &gt; epidermal extract. Estimated first order degradation rate constants were 6.1 5 +/- 0.14, 0.57 +/- 0.02 and 0.011 +/- 0.004 h(-1) for skin homogenate, serosal extract and epidermal extract, respectively. Therefore, it appeared that AM was hydrolyzed to some extent into salicylmaltol by esterases in the dermal and subcutaneous tissues of skin. Taken together, our data indicated that transdermal delivery of AM is feasible when the combination of PG and LOA is used as a vehicle. However, since AM is not metabolically stable, acceptable degradation inhibitors may be necessary to fully realize the transdermal delivery of the drug.</description><subject>Animals</subject><subject>Aspirin - analogs &amp; derivatives</subject><subject>Aspirin - pharmacokinetics</subject><subject>Fibrinolytic Agents - pharmacokinetics</subject><subject>Linoleic Acid - pharmacology</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Hairless</subject><subject>Pharmaceutical Vehicles</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Skin - metabolism</subject><subject>Skin Absorption</subject><subject>Species Specificity</subject><issn>0253-6269</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kD1PwzAQhj2AaCks_ADkiS3gj9iOR6haQKrEAnPkOuc2kDjFdiuVgd-O1ZbpTrrneaV7Ebqh5J4Soh6e5oRpJaisztCYMMELyaQeocsYPwnhUghxgUaUKl0KXo3R78w5sAkPDu9g3doOIja-weDXxlsIEQ8epzXg1uNdm8KA41deN-AhBZPafM2qiRvTmTR4OMhtijngZ99nwOIGVsE0R9bYMMSIs3nIiVfo3JkuwvVpTtDHfPY-fSkWb8-v08dFsWKcpUKLylLOqGCaVawEuTQVhyUT-TnjnOBguFWNKzk4rSWhWjlrjSZKSVmB4xN0d8zdhOF7CzHVfRstdJ3xMGxjrVhJBBU8g7cncLvsoak3oe1N2Nf_jfE_AbhsUA</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Gwak, H S</creator><creator>Chun, I K</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20011201</creationdate><title>Effect of vehicles and enhancers on the in vitro skin penetration of aspalatone and its enzymatic degradation across rat skins</title><author>Gwak, H S ; Chun, I K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g232t-958c13215292824e6ba83eb25626aff53ea3c7df43ef9960197fcca9077668ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Aspirin - analogs &amp; derivatives</topic><topic>Aspirin - pharmacokinetics</topic><topic>Fibrinolytic Agents - pharmacokinetics</topic><topic>Linoleic Acid - pharmacology</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Hairless</topic><topic>Pharmaceutical Vehicles</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Skin - metabolism</topic><topic>Skin Absorption</topic><topic>Species Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gwak, H S</creatorcontrib><creatorcontrib>Chun, I K</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of pharmacal research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gwak, H S</au><au>Chun, I K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of vehicles and enhancers on the in vitro skin penetration of aspalatone and its enzymatic degradation across rat skins</atitle><jtitle>Archives of pharmacal research</jtitle><addtitle>Arch Pharm Res</addtitle><date>2001-12-01</date><risdate>2001</risdate><volume>24</volume><issue>6</issue><spage>572</spage><epage>577</epage><pages>572-577</pages><issn>0253-6269</issn><abstract>The feasibility of skin penetration was studied for aspalatone (AM, acetylsalicylic acid maltol ester), a novel antithrombotic agent. In this study, hairless mouse dorsal skins were used as a model to select composition of vehicle and AM. Based on measurements of solubility and partition coefficient, the concentration of PG that showed the highest flux for AM across the hairless mouse skin was found to be 40%. The cumulative amount permeated at 48 h, however, appear inadequate, even when the PG concentration was employed. To identify a suitable absorption enhancer and its optimal concentration for AM, a number of absorption enhancers and a variety of concentration were screened for the increase in transdermal flux of AM. Amongst these, linoleic acid (LOA) at the concentration of 5% was found to have the largest enhancement factor (i.e., 132). However, a further increase in AM flux was not found in the fatty acid concentration greater than 5%, indicating the enhancement effect is in a bell-shaped curve. In a study of the effect of AM concentration on the permeation, there was no difference in the permeation rate between 0.5 and 1% for AM, below its saturated concentration. At the donor concentration of 2%, over the saturated condition, the flux of AM was markedly increased. A considerable degradation of AM was found during permeation studies, and the extent was correlated with protein concentrations in the epidermal and serosal extracts, and skin homogenates. In rat dorsal skins, the protein concentration decreased in the rank order of skin homogenate &gt; serosal extract &gt; epidermal extract. Estimated first order degradation rate constants were 6.1 5 +/- 0.14, 0.57 +/- 0.02 and 0.011 +/- 0.004 h(-1) for skin homogenate, serosal extract and epidermal extract, respectively. Therefore, it appeared that AM was hydrolyzed to some extent into salicylmaltol by esterases in the dermal and subcutaneous tissues of skin. Taken together, our data indicated that transdermal delivery of AM is feasible when the combination of PG and LOA is used as a vehicle. However, since AM is not metabolically stable, acceptable degradation inhibitors may be necessary to fully realize the transdermal delivery of the drug.</abstract><cop>Korea (South)</cop><pmid>11794538</pmid><doi>10.1007/BF02975168</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0253-6269
ispartof Archives of pharmacal research, 2001-12, Vol.24 (6), p.572-577
issn 0253-6269
language eng
recordid cdi_proquest_miscellaneous_72405153
source MEDLINE; Springer Nature - Complete Springer Journals
subjects Animals
Aspirin - analogs & derivatives
Aspirin - pharmacokinetics
Fibrinolytic Agents - pharmacokinetics
Linoleic Acid - pharmacology
Male
Mice
Mice, Hairless
Pharmaceutical Vehicles
Rats
Rats, Sprague-Dawley
Skin - metabolism
Skin Absorption
Species Specificity
title Effect of vehicles and enhancers on the in vitro skin penetration of aspalatone and its enzymatic degradation across rat skins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T21%3A11%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20vehicles%20and%20enhancers%20on%20the%20in%20vitro%20skin%20penetration%20of%20aspalatone%20and%20its%20enzymatic%20degradation%20across%20rat%20skins&rft.jtitle=Archives%20of%20pharmacal%20research&rft.au=Gwak,%20H%20S&rft.date=2001-12-01&rft.volume=24&rft.issue=6&rft.spage=572&rft.epage=577&rft.pages=572-577&rft.issn=0253-6269&rft_id=info:doi/10.1007/BF02975168&rft_dat=%3Cproquest_pubme%3E72405153%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72405153&rft_id=info:pmid/11794538&rfr_iscdi=true