Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations
This paper considers the solution of the bioelectromagnetic inverse problem with particular emphasis on focal compact sources that are likely to arise in epileptic data. Two linear inverse methods are proposed and evaluated in simulations. The first method belongs to the class of distributed inverse...
Gespeichert in:
Veröffentlicht in: | Brain topography 2001, Vol.14 (2), p.131-137 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 137 |
---|---|
container_issue | 2 |
container_start_page | 131 |
container_title | Brain topography |
container_volume | 14 |
creator | Grave de Peralta Menendez, R Gonzalez Andino, S Lantz, G Michel, C M Landis, T |
description | This paper considers the solution of the bioelectromagnetic inverse problem with particular emphasis on focal compact sources that are likely to arise in epileptic data. Two linear inverse methods are proposed and evaluated in simulations. The first method belongs to the class of distributed inverse solutions, capable of dealing with multiple simultaneously active sources. This solution is based on a Local Auto Regressive Average (LAURA) model. Since no assumption is made about the number of activated sources, this approach can be applied to data with multiple sources. The second method, EPIFOCUS, assumes that there is only a single focal source. However, in contrast to the single dipole model, it allows the source to have a spatial extent beyond a single point and avoids the non-linear optimization process required by dipole fitting. The performance of both methods is evaluated with synthetic data in noisy and noise free conditions. The simulation results demonstrate that LAURA and EPIFOCUS increase the number of sources retrieved with zero dipole localization error and produce lower maximum error and lower average error compared to Minimum Norm, Weighted Minimum Norm and Minimum Laplacian (LORETA). The results show that EPIFOCUS is a robust and powerful tool to localize focal sources. Alternatives to localize data generated by multiple sources are discussed. A companion paper (Lantz et al. 2001, this issue) illustrates the application of LAURA and EPIFOCUS to the analysis of interictal data in epileptic patients. |
doi_str_mv | 10.1023/A:1012944913650 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_72400410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>404193911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-6f0409a1ba8392905bad013008b3a5ac7607ca264e45b3ed80029ad023c420b23</originalsourceid><addsrcrecordid>eNpdkDtPwzAUhS0EoqUwsyGLgS3l-hE7ZqsqXlKBBebIcRxwlcQhdiqVX08KZWE6d_jup6OD0DmBOQHKrhc3BAhVnCvCRAoHaEpSyRIhFT1EU8iUSIAKOUEnIawBgCkpj9GEEKlkRsgUVc--de1GB7exuPZG1-5LR-db7Ctsa2ti7xv93troDLadq223u7SJbuPido4f5_jJxg9f4tIG07tu9xywbkscXDPUP7Jwio4qXQd7ts8Zeru7fV0-JKuX-8flYpUYRkVMRAUclCaFzpiiCtJCl0AYQFYwnWojBUijqeCWpwWzZQZA1YhQZjiFgrIZuvr1dr3_HGyIeeOCsXWtW-uHkEvKATiBEbz8B6790Ldjt5yOgzLO6c52sYeGorFl3vWu0f02_5uPfQMiH3Hr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212934422</pqid></control><display><type>article</type><title>Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Grave de Peralta Menendez, R ; Gonzalez Andino, S ; Lantz, G ; Michel, C M ; Landis, T</creator><creatorcontrib>Grave de Peralta Menendez, R ; Gonzalez Andino, S ; Lantz, G ; Michel, C M ; Landis, T</creatorcontrib><description>This paper considers the solution of the bioelectromagnetic inverse problem with particular emphasis on focal compact sources that are likely to arise in epileptic data. Two linear inverse methods are proposed and evaluated in simulations. The first method belongs to the class of distributed inverse solutions, capable of dealing with multiple simultaneously active sources. This solution is based on a Local Auto Regressive Average (LAURA) model. Since no assumption is made about the number of activated sources, this approach can be applied to data with multiple sources. The second method, EPIFOCUS, assumes that there is only a single focal source. However, in contrast to the single dipole model, it allows the source to have a spatial extent beyond a single point and avoids the non-linear optimization process required by dipole fitting. The performance of both methods is evaluated with synthetic data in noisy and noise free conditions. The simulation results demonstrate that LAURA and EPIFOCUS increase the number of sources retrieved with zero dipole localization error and produce lower maximum error and lower average error compared to Minimum Norm, Weighted Minimum Norm and Minimum Laplacian (LORETA). The results show that EPIFOCUS is a robust and powerful tool to localize focal sources. Alternatives to localize data generated by multiple sources are discussed. A companion paper (Lantz et al. 2001, this issue) illustrates the application of LAURA and EPIFOCUS to the analysis of interictal data in epileptic patients.</description><identifier>ISSN: 0896-0267</identifier><identifier>EISSN: 1573-6792</identifier><identifier>DOI: 10.1023/A:1012944913650</identifier><identifier>PMID: 11797811</identifier><identifier>CODEN: BRTOEZ</identifier><language>eng</language><publisher>United States: Springer Nature B.V</publisher><subject>Brain - physiopathology ; Brain Mapping - methods ; Computer Simulation ; Electromagnetic Phenomena ; Epilepsy - physiopathology ; Humans ; Linear Models</subject><ispartof>Brain topography, 2001, Vol.14 (2), p.131-137</ispartof><rights>Copyright Kluwer Academic Publishers Winter 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c326t-6f0409a1ba8392905bad013008b3a5ac7607ca264e45b3ed80029ad023c420b23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11797811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grave de Peralta Menendez, R</creatorcontrib><creatorcontrib>Gonzalez Andino, S</creatorcontrib><creatorcontrib>Lantz, G</creatorcontrib><creatorcontrib>Michel, C M</creatorcontrib><creatorcontrib>Landis, T</creatorcontrib><title>Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations</title><title>Brain topography</title><addtitle>Brain Topogr</addtitle><description>This paper considers the solution of the bioelectromagnetic inverse problem with particular emphasis on focal compact sources that are likely to arise in epileptic data. Two linear inverse methods are proposed and evaluated in simulations. The first method belongs to the class of distributed inverse solutions, capable of dealing with multiple simultaneously active sources. This solution is based on a Local Auto Regressive Average (LAURA) model. Since no assumption is made about the number of activated sources, this approach can be applied to data with multiple sources. The second method, EPIFOCUS, assumes that there is only a single focal source. However, in contrast to the single dipole model, it allows the source to have a spatial extent beyond a single point and avoids the non-linear optimization process required by dipole fitting. The performance of both methods is evaluated with synthetic data in noisy and noise free conditions. The simulation results demonstrate that LAURA and EPIFOCUS increase the number of sources retrieved with zero dipole localization error and produce lower maximum error and lower average error compared to Minimum Norm, Weighted Minimum Norm and Minimum Laplacian (LORETA). The results show that EPIFOCUS is a robust and powerful tool to localize focal sources. Alternatives to localize data generated by multiple sources are discussed. A companion paper (Lantz et al. 2001, this issue) illustrates the application of LAURA and EPIFOCUS to the analysis of interictal data in epileptic patients.</description><subject>Brain - physiopathology</subject><subject>Brain Mapping - methods</subject><subject>Computer Simulation</subject><subject>Electromagnetic Phenomena</subject><subject>Epilepsy - physiopathology</subject><subject>Humans</subject><subject>Linear Models</subject><issn>0896-0267</issn><issn>1573-6792</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkDtPwzAUhS0EoqUwsyGLgS3l-hE7ZqsqXlKBBebIcRxwlcQhdiqVX08KZWE6d_jup6OD0DmBOQHKrhc3BAhVnCvCRAoHaEpSyRIhFT1EU8iUSIAKOUEnIawBgCkpj9GEEKlkRsgUVc--de1GB7exuPZG1-5LR-db7Ctsa2ti7xv93troDLadq223u7SJbuPido4f5_jJxg9f4tIG07tu9xywbkscXDPUP7Jwio4qXQd7ts8Zeru7fV0-JKuX-8flYpUYRkVMRAUclCaFzpiiCtJCl0AYQFYwnWojBUijqeCWpwWzZQZA1YhQZjiFgrIZuvr1dr3_HGyIeeOCsXWtW-uHkEvKATiBEbz8B6790Ldjt5yOgzLO6c52sYeGorFl3vWu0f02_5uPfQMiH3Hr</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Grave de Peralta Menendez, R</creator><creator>Gonzalez Andino, S</creator><creator>Lantz, G</creator><creator>Michel, C M</creator><creator>Landis, T</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2001</creationdate><title>Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations</title><author>Grave de Peralta Menendez, R ; Gonzalez Andino, S ; Lantz, G ; Michel, C M ; Landis, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-6f0409a1ba8392905bad013008b3a5ac7607ca264e45b3ed80029ad023c420b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Brain - physiopathology</topic><topic>Brain Mapping - methods</topic><topic>Computer Simulation</topic><topic>Electromagnetic Phenomena</topic><topic>Epilepsy - physiopathology</topic><topic>Humans</topic><topic>Linear Models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grave de Peralta Menendez, R</creatorcontrib><creatorcontrib>Gonzalez Andino, S</creatorcontrib><creatorcontrib>Lantz, G</creatorcontrib><creatorcontrib>Michel, C M</creatorcontrib><creatorcontrib>Landis, T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Brain topography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grave de Peralta Menendez, R</au><au>Gonzalez Andino, S</au><au>Lantz, G</au><au>Michel, C M</au><au>Landis, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations</atitle><jtitle>Brain topography</jtitle><addtitle>Brain Topogr</addtitle><date>2001</date><risdate>2001</risdate><volume>14</volume><issue>2</issue><spage>131</spage><epage>137</epage><pages>131-137</pages><issn>0896-0267</issn><eissn>1573-6792</eissn><coden>BRTOEZ</coden><abstract>This paper considers the solution of the bioelectromagnetic inverse problem with particular emphasis on focal compact sources that are likely to arise in epileptic data. Two linear inverse methods are proposed and evaluated in simulations. The first method belongs to the class of distributed inverse solutions, capable of dealing with multiple simultaneously active sources. This solution is based on a Local Auto Regressive Average (LAURA) model. Since no assumption is made about the number of activated sources, this approach can be applied to data with multiple sources. The second method, EPIFOCUS, assumes that there is only a single focal source. However, in contrast to the single dipole model, it allows the source to have a spatial extent beyond a single point and avoids the non-linear optimization process required by dipole fitting. The performance of both methods is evaluated with synthetic data in noisy and noise free conditions. The simulation results demonstrate that LAURA and EPIFOCUS increase the number of sources retrieved with zero dipole localization error and produce lower maximum error and lower average error compared to Minimum Norm, Weighted Minimum Norm and Minimum Laplacian (LORETA). The results show that EPIFOCUS is a robust and powerful tool to localize focal sources. Alternatives to localize data generated by multiple sources are discussed. A companion paper (Lantz et al. 2001, this issue) illustrates the application of LAURA and EPIFOCUS to the analysis of interictal data in epileptic patients.</abstract><cop>United States</cop><pub>Springer Nature B.V</pub><pmid>11797811</pmid><doi>10.1023/A:1012944913650</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0896-0267 |
ispartof | Brain topography, 2001, Vol.14 (2), p.131-137 |
issn | 0896-0267 1573-6792 |
language | eng |
recordid | cdi_proquest_miscellaneous_72400410 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Brain - physiopathology Brain Mapping - methods Computer Simulation Electromagnetic Phenomena Epilepsy - physiopathology Humans Linear Models |
title | Noninvasive localization of electromagnetic epileptic activity. I. Method descriptions and simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A26%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noninvasive%20localization%20of%20electromagnetic%20epileptic%20activity.%20I.%20Method%20descriptions%20and%20simulations&rft.jtitle=Brain%20topography&rft.au=Grave%20de%20Peralta%20Menendez,%20R&rft.date=2001&rft.volume=14&rft.issue=2&rft.spage=131&rft.epage=137&rft.pages=131-137&rft.issn=0896-0267&rft.eissn=1573-6792&rft.coden=BRTOEZ&rft_id=info:doi/10.1023/A:1012944913650&rft_dat=%3Cproquest_pubme%3E404193911%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212934422&rft_id=info:pmid/11797811&rfr_iscdi=true |