Evidence that Ralstonia eutropha (Alcaligenes eutrophus) contains a functional homologue of the Ralstonia solanacearum Phc cell density sensing system

In the phytopathogen Ralstonia (Pseudomonas) solanacearum, control of many virulence genes is partly mediated by the Phc cell density sensing system. Phc uses a novel self‐produced signal molecule [3‐hydroxypalmitic acid methyl ester (3‐OH PAME)], an atypical two‐component system (PhcS/PhcR), and a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2000-10, Vol.38 (2), p.359-367
Hauptverfasser: Garg, Ram P., Yindeeyoungyeon, Wandee, Gilis, Anja, Denny, Timothy P., Van Der Lelie, Daniel, Schell, MarK. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 367
container_issue 2
container_start_page 359
container_title Molecular microbiology
container_volume 38
creator Garg, Ram P.
Yindeeyoungyeon, Wandee
Gilis, Anja
Denny, Timothy P.
Van Der Lelie, Daniel
Schell, MarK. A.
description In the phytopathogen Ralstonia (Pseudomonas) solanacearum, control of many virulence genes is partly mediated by the Phc cell density sensing system. Phc uses a novel self‐produced signal molecule [3‐hydroxypalmitic acid methyl ester (3‐OH PAME)], an atypical two‐component system (PhcS/PhcR), and a LysR‐type activator (PhcA) to regulate a reversible switching between two different physiological states. While Phc is present in most R. solanacearum strains, it is apparently absent from other pseudomonad plant pathogens and prokaryotic genomes that have been sequenced. Here, we report discovery of a phcA orthologue in the non‐pathogenic, facultative chemolithoautotroph Ralstonia eutropha (Alcaligenes eutrophus) that fully complements R. solanacearum phcA mutants. We also demonstrate that some R. eutropha produce an extracellular factor that complements R. solanacearum mutants deficient in production of the 3‐OH PAME signal molecule that controls phcA. Additionally, Southern blot hybridization analysis suggested that R. eutropha harbours other Phc components, such as PhcB (a biosynthetic enzyme for 3‐OH PAME) and PhcS (a 3‐OH PAME‐responsive sensor kinase). Analysis of a phcA‐null mutant of R. eutropha showed that phcA (and probably Phc) positively activates motility, in contrast to R. solanacearum where it represses motility. Similarly, the R. eutropha phcA mutant was unaffected in siderophore production, whereas inactivation of phcA in R. solanacearum increases siderophore production. Although our data strongly suggest that R. eutropha has a functional Phc‐like system and support the phylogeny of Ralstonia, it implies that Phc may have a different physiological and ecological function in R. eutropha.
doi_str_mv 10.1046/j.1365-2958.2000.02131.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72398289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17838840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3961-e921811e0cd24204429ec7ef51d612bbf3eafc56d94d1eecda1674f88d0ed3e93</originalsourceid><addsrcrecordid>eNqNkc1u1DAURi0EokPhFZBXCBYJvnbicRYsqqqFSq2KEEjsLI99M-ORYw9xQjsvwvOSMMPPjq6uZZ_vu5YOIRRYCaySb7clCFkXvKlVyRljJeMgoLx_RBZ_Hh6TBWtqVgjFv56QZzlvGQPBpHhKTgCYbKSEBflx8d07jBbpsDED_WRCHlL0huI49Gm3MfT1WbAm-DVGzL9vx_yG2hQH42OmhrZjtINP0QS6SV0KaT0iTe1Uif805hRMNBZNP3b048ZSiyHQaXn2w57mecY1zfs8YPecPGmnIL44zlPy5fLi8_mH4vr2_dX52XVhRSOhwIaDAkBmHa84qyreoF1iW4OTwFerVqBpbS1dUzlAtM6AXFatUo6hE9iIU_Lq0Lvr07cR86A7n-d_mYhpzHrJRaO4-j8ISyWUqtgEqgNo-5Rzj63e9b4z_V4D07M8vdWzIz070rM8_Uuevp-iL487xlWH7m_waGsC3h2AOx9w_-BifXNzNZ_ET5QSrFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17838840</pqid></control><display><type>article</type><title>Evidence that Ralstonia eutropha (Alcaligenes eutrophus) contains a functional homologue of the Ralstonia solanacearum Phc cell density sensing system</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Garg, Ram P. ; Yindeeyoungyeon, Wandee ; Gilis, Anja ; Denny, Timothy P. ; Van Der Lelie, Daniel ; Schell, MarK. A.</creator><creatorcontrib>Garg, Ram P. ; Yindeeyoungyeon, Wandee ; Gilis, Anja ; Denny, Timothy P. ; Van Der Lelie, Daniel ; Schell, MarK. A.</creatorcontrib><description>In the phytopathogen Ralstonia (Pseudomonas) solanacearum, control of many virulence genes is partly mediated by the Phc cell density sensing system. Phc uses a novel self‐produced signal molecule [3‐hydroxypalmitic acid methyl ester (3‐OH PAME)], an atypical two‐component system (PhcS/PhcR), and a LysR‐type activator (PhcA) to regulate a reversible switching between two different physiological states. While Phc is present in most R. solanacearum strains, it is apparently absent from other pseudomonad plant pathogens and prokaryotic genomes that have been sequenced. Here, we report discovery of a phcA orthologue in the non‐pathogenic, facultative chemolithoautotroph Ralstonia eutropha (Alcaligenes eutrophus) that fully complements R. solanacearum phcA mutants. We also demonstrate that some R. eutropha produce an extracellular factor that complements R. solanacearum mutants deficient in production of the 3‐OH PAME signal molecule that controls phcA. Additionally, Southern blot hybridization analysis suggested that R. eutropha harbours other Phc components, such as PhcB (a biosynthetic enzyme for 3‐OH PAME) and PhcS (a 3‐OH PAME‐responsive sensor kinase). Analysis of a phcA‐null mutant of R. eutropha showed that phcA (and probably Phc) positively activates motility, in contrast to R. solanacearum where it represses motility. Similarly, the R. eutropha phcA mutant was unaffected in siderophore production, whereas inactivation of phcA in R. solanacearum increases siderophore production. Although our data strongly suggest that R. eutropha has a functional Phc‐like system and support the phylogeny of Ralstonia, it implies that Phc may have a different physiological and ecological function in R. eutropha.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1046/j.1365-2958.2000.02131.x</identifier><identifier>PMID: 11069661</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Amino Acid Sequence ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Cupriavidus necator - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Gene Expression Regulation, Bacterial ; Molecular Sequence Data ; Palmitic Acids - metabolism ; PhcB protein ; PhcS protein ; Promoter Regions, Genetic ; Ralstonia eutropha ; Ralstonia solanacearum ; Repressor Proteins - genetics ; Transcription Factors - genetics ; Transcription Factors - metabolism ; virulence factors</subject><ispartof>Molecular microbiology, 2000-10, Vol.38 (2), p.359-367</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3961-e921811e0cd24204429ec7ef51d612bbf3eafc56d94d1eecda1674f88d0ed3e93</citedby><cites>FETCH-LOGICAL-c3961-e921811e0cd24204429ec7ef51d612bbf3eafc56d94d1eecda1674f88d0ed3e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2958.2000.02131.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2958.2000.02131.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11069661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garg, Ram P.</creatorcontrib><creatorcontrib>Yindeeyoungyeon, Wandee</creatorcontrib><creatorcontrib>Gilis, Anja</creatorcontrib><creatorcontrib>Denny, Timothy P.</creatorcontrib><creatorcontrib>Van Der Lelie, Daniel</creatorcontrib><creatorcontrib>Schell, MarK. A.</creatorcontrib><title>Evidence that Ralstonia eutropha (Alcaligenes eutrophus) contains a functional homologue of the Ralstonia solanacearum Phc cell density sensing system</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>In the phytopathogen Ralstonia (Pseudomonas) solanacearum, control of many virulence genes is partly mediated by the Phc cell density sensing system. Phc uses a novel self‐produced signal molecule [3‐hydroxypalmitic acid methyl ester (3‐OH PAME)], an atypical two‐component system (PhcS/PhcR), and a LysR‐type activator (PhcA) to regulate a reversible switching between two different physiological states. While Phc is present in most R. solanacearum strains, it is apparently absent from other pseudomonad plant pathogens and prokaryotic genomes that have been sequenced. Here, we report discovery of a phcA orthologue in the non‐pathogenic, facultative chemolithoautotroph Ralstonia eutropha (Alcaligenes eutrophus) that fully complements R. solanacearum phcA mutants. We also demonstrate that some R. eutropha produce an extracellular factor that complements R. solanacearum mutants deficient in production of the 3‐OH PAME signal molecule that controls phcA. Additionally, Southern blot hybridization analysis suggested that R. eutropha harbours other Phc components, such as PhcB (a biosynthetic enzyme for 3‐OH PAME) and PhcS (a 3‐OH PAME‐responsive sensor kinase). Analysis of a phcA‐null mutant of R. eutropha showed that phcA (and probably Phc) positively activates motility, in contrast to R. solanacearum where it represses motility. Similarly, the R. eutropha phcA mutant was unaffected in siderophore production, whereas inactivation of phcA in R. solanacearum increases siderophore production. Although our data strongly suggest that R. eutropha has a functional Phc‐like system and support the phylogeny of Ralstonia, it implies that Phc may have a different physiological and ecological function in R. eutropha.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Cupriavidus necator - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Molecular Sequence Data</subject><subject>Palmitic Acids - metabolism</subject><subject>PhcB protein</subject><subject>PhcS protein</subject><subject>Promoter Regions, Genetic</subject><subject>Ralstonia eutropha</subject><subject>Ralstonia solanacearum</subject><subject>Repressor Proteins - genetics</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>virulence factors</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkc1u1DAURi0EokPhFZBXCBYJvnbicRYsqqqFSq2KEEjsLI99M-ORYw9xQjsvwvOSMMPPjq6uZZ_vu5YOIRRYCaySb7clCFkXvKlVyRljJeMgoLx_RBZ_Hh6TBWtqVgjFv56QZzlvGQPBpHhKTgCYbKSEBflx8d07jBbpsDED_WRCHlL0huI49Gm3MfT1WbAm-DVGzL9vx_yG2hQH42OmhrZjtINP0QS6SV0KaT0iTe1Uif805hRMNBZNP3b048ZSiyHQaXn2w57mecY1zfs8YPecPGmnIL44zlPy5fLi8_mH4vr2_dX52XVhRSOhwIaDAkBmHa84qyreoF1iW4OTwFerVqBpbS1dUzlAtM6AXFatUo6hE9iIU_Lq0Lvr07cR86A7n-d_mYhpzHrJRaO4-j8ISyWUqtgEqgNo-5Rzj63e9b4z_V4D07M8vdWzIz070rM8_Uuevp-iL487xlWH7m_waGsC3h2AOx9w_-BifXNzNZ_ET5QSrFQ</recordid><startdate>200010</startdate><enddate>200010</enddate><creator>Garg, Ram P.</creator><creator>Yindeeyoungyeon, Wandee</creator><creator>Gilis, Anja</creator><creator>Denny, Timothy P.</creator><creator>Van Der Lelie, Daniel</creator><creator>Schell, MarK. A.</creator><general>Blackwell Science Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>200010</creationdate><title>Evidence that Ralstonia eutropha (Alcaligenes eutrophus) contains a functional homologue of the Ralstonia solanacearum Phc cell density sensing system</title><author>Garg, Ram P. ; Yindeeyoungyeon, Wandee ; Gilis, Anja ; Denny, Timothy P. ; Van Der Lelie, Daniel ; Schell, MarK. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3961-e921811e0cd24204429ec7ef51d612bbf3eafc56d94d1eecda1674f88d0ed3e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Cupriavidus necator - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Molecular Sequence Data</topic><topic>Palmitic Acids - metabolism</topic><topic>PhcB protein</topic><topic>PhcS protein</topic><topic>Promoter Regions, Genetic</topic><topic>Ralstonia eutropha</topic><topic>Ralstonia solanacearum</topic><topic>Repressor Proteins - genetics</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>virulence factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garg, Ram P.</creatorcontrib><creatorcontrib>Yindeeyoungyeon, Wandee</creatorcontrib><creatorcontrib>Gilis, Anja</creatorcontrib><creatorcontrib>Denny, Timothy P.</creatorcontrib><creatorcontrib>Van Der Lelie, Daniel</creatorcontrib><creatorcontrib>Schell, MarK. A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garg, Ram P.</au><au>Yindeeyoungyeon, Wandee</au><au>Gilis, Anja</au><au>Denny, Timothy P.</au><au>Van Der Lelie, Daniel</au><au>Schell, MarK. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence that Ralstonia eutropha (Alcaligenes eutrophus) contains a functional homologue of the Ralstonia solanacearum Phc cell density sensing system</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2000-10</date><risdate>2000</risdate><volume>38</volume><issue>2</issue><spage>359</spage><epage>367</epage><pages>359-367</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>In the phytopathogen Ralstonia (Pseudomonas) solanacearum, control of many virulence genes is partly mediated by the Phc cell density sensing system. Phc uses a novel self‐produced signal molecule [3‐hydroxypalmitic acid methyl ester (3‐OH PAME)], an atypical two‐component system (PhcS/PhcR), and a LysR‐type activator (PhcA) to regulate a reversible switching between two different physiological states. While Phc is present in most R. solanacearum strains, it is apparently absent from other pseudomonad plant pathogens and prokaryotic genomes that have been sequenced. Here, we report discovery of a phcA orthologue in the non‐pathogenic, facultative chemolithoautotroph Ralstonia eutropha (Alcaligenes eutrophus) that fully complements R. solanacearum phcA mutants. We also demonstrate that some R. eutropha produce an extracellular factor that complements R. solanacearum mutants deficient in production of the 3‐OH PAME signal molecule that controls phcA. Additionally, Southern blot hybridization analysis suggested that R. eutropha harbours other Phc components, such as PhcB (a biosynthetic enzyme for 3‐OH PAME) and PhcS (a 3‐OH PAME‐responsive sensor kinase). Analysis of a phcA‐null mutant of R. eutropha showed that phcA (and probably Phc) positively activates motility, in contrast to R. solanacearum where it represses motility. Similarly, the R. eutropha phcA mutant was unaffected in siderophore production, whereas inactivation of phcA in R. solanacearum increases siderophore production. Although our data strongly suggest that R. eutropha has a functional Phc‐like system and support the phylogeny of Ralstonia, it implies that Phc may have a different physiological and ecological function in R. eutropha.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>11069661</pmid><doi>10.1046/j.1365-2958.2000.02131.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2000-10, Vol.38 (2), p.359-367
issn 0950-382X
1365-2958
language eng
recordid cdi_proquest_miscellaneous_72398289
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Cupriavidus necator - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Gene Expression Regulation, Bacterial
Molecular Sequence Data
Palmitic Acids - metabolism
PhcB protein
PhcS protein
Promoter Regions, Genetic
Ralstonia eutropha
Ralstonia solanacearum
Repressor Proteins - genetics
Transcription Factors - genetics
Transcription Factors - metabolism
virulence factors
title Evidence that Ralstonia eutropha (Alcaligenes eutrophus) contains a functional homologue of the Ralstonia solanacearum Phc cell density sensing system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20that%20Ralstonia%20eutropha%20(Alcaligenes%20eutrophus)%20contains%20a%20functional%20homologue%20of%20the%20Ralstonia%20solanacearum%20Phc%20cell%20density%20sensing%20system&rft.jtitle=Molecular%20microbiology&rft.au=Garg,%20Ram%20P.&rft.date=2000-10&rft.volume=38&rft.issue=2&rft.spage=359&rft.epage=367&rft.pages=359-367&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1046/j.1365-2958.2000.02131.x&rft_dat=%3Cproquest_cross%3E17838840%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17838840&rft_id=info:pmid/11069661&rfr_iscdi=true