Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids
Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle...
Gespeichert in:
Veröffentlicht in: | Biology of the cell 2000-08, Vol.92 (5), p.317-329 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 329 |
---|---|
container_issue | 5 |
container_start_page | 317 |
container_title | Biology of the cell |
container_volume | 92 |
creator | Totland, Geir K Madsen, Lise Klementsen, Beate Vaagenes, Hege Kryvi, Harald Frøyland, Livar Hexeberg, Sofie Berge, Rolf K |
description | Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle fibers in both the diaphragm and soleus muscle, and the size distribution of mitochondrial areas followed a similar pattern. Only the 3-thia fatty acid induced mitochondrial growth in type II muscle fibers. The mean area occupied by the mitochondria and the size distribution of mitochondrial areas in both fiber types were highly similar in DHA-treated and control animals. Only the 3-thia fatty acid increased the gene-expression of carnitine palmitoyltransferase (CPT)-II in the diaphragm. In the heart, however, the gene expression decreased. In hepatocytes an increase in the mean size of mitochondria was observed after EPA treatment, concomitant with an increase in mitochondrial CPT-II gene expression. Administration of 2-methyl-substituted EPA (methyl-EPA) induced a higher rate of growth of mitochondria than EPA. At the peroxisomal level in the hepatocytes a 3-thia fatty acid, EPA, and DHA increased the areal fraction concomitant with the induction of gene expression of peroxisomal fatty acyl-CoA oxidase (FAO). In the diaphragm, mRNA levels of FAO were not affected by EPA or DHA treatment, whereas gene expression was significantly increased after 3-thia fatty acid treatment. In the heart, both 3-thia fatty acid, EPA and DHA tended to decrease the levels of FAO mRNA. The areal fraction of fat droplets in all three tissue types was significantly lower in the groups treated with 3-thia fatty acid. In the group treated with EPA a lower areal fraction of fat droplets was observed, while the DHA group was similar to the control. This indicates that EPA and DHA have different effects on mitochondrial biogenesis. |
doi_str_mv | 10.1016/S0248-4900(00)01077-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72396245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0248490000010777</els_id><sourcerecordid>72396245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5639-10c89965974804732597e83aeecaa9d82c942c3f362fcef60353530e932caa403</originalsourceid><addsrcrecordid>eNqNkVtvFCEYhonR2LX6EzRcGU0c5TAnemPqRFvjxhoPae8IZb5xscwwAlt3fpd_UGZ3s15qIIHA83wcXoQeU_KSElq--kJYXme5IOQZIc8JJVWVVXfQglZlnXHGru6ixQE5Qg9C-EEIyUVd3EdHNOGU5HSBfn_yzpoOvIrGDdh1uDfR6ZUbWm8UVkOLv8MAGDajhxD2jFZ-MNGk9VHZWZhs9GoIc50AW6tTMU5Y6clmjTvFbmPaecsMOB2Fww1YiMrifh20hRd4BcrHrWjNLXh8PeHVNKarjaaF3uhDPdOGh-hep2yAR_vxGH179_Zrc54tL87eN6fLTBclFxkluhaiLESV1ySvOEszqLkC0EqJtmZa5Ezzjpes09CVhBepERCcJSAn_Bg93dUdvfu5hhBlb4IGa9UAbh1kxbgoWV4ksNiB2rsQPHRy9KZXfpKUyDktuU1LzlHIuc9pySp5T_YHrK97aP9a-3gScLIDfhkL0_9VlW8uGloKkeRsJ5sQYXOQlb-RZcWrQl5-PJPkM1-eN5dX8kPiX-94SH96a8DLoA0MGlrjQUfZOvOP9_wBFqbIOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72396245</pqid></control><display><type>article</type><title>Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Totland, Geir K ; Madsen, Lise ; Klementsen, Beate ; Vaagenes, Hege ; Kryvi, Harald ; Frøyland, Livar ; Hexeberg, Sofie ; Berge, Rolf K</creator><creatorcontrib>Totland, Geir K ; Madsen, Lise ; Klementsen, Beate ; Vaagenes, Hege ; Kryvi, Harald ; Frøyland, Livar ; Hexeberg, Sofie ; Berge, Rolf K</creatorcontrib><description>Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle fibers in both the diaphragm and soleus muscle, and the size distribution of mitochondrial areas followed a similar pattern. Only the 3-thia fatty acid induced mitochondrial growth in type II muscle fibers. The mean area occupied by the mitochondria and the size distribution of mitochondrial areas in both fiber types were highly similar in DHA-treated and control animals. Only the 3-thia fatty acid increased the gene-expression of carnitine palmitoyltransferase (CPT)-II in the diaphragm. In the heart, however, the gene expression decreased. In hepatocytes an increase in the mean size of mitochondria was observed after EPA treatment, concomitant with an increase in mitochondrial CPT-II gene expression. Administration of 2-methyl-substituted EPA (methyl-EPA) induced a higher rate of growth of mitochondria than EPA. At the peroxisomal level in the hepatocytes a 3-thia fatty acid, EPA, and DHA increased the areal fraction concomitant with the induction of gene expression of peroxisomal fatty acyl-CoA oxidase (FAO). In the diaphragm, mRNA levels of FAO were not affected by EPA or DHA treatment, whereas gene expression was significantly increased after 3-thia fatty acid treatment. In the heart, both 3-thia fatty acid, EPA and DHA tended to decrease the levels of FAO mRNA. The areal fraction of fat droplets in all three tissue types was significantly lower in the groups treated with 3-thia fatty acid. In the group treated with EPA a lower areal fraction of fat droplets was observed, while the DHA group was similar to the control. This indicates that EPA and DHA have different effects on mitochondrial biogenesis.</description><identifier>ISSN: 0248-4900</identifier><identifier>EISSN: 1768-322X</identifier><identifier>DOI: 10.1016/S0248-4900(00)01077-7</identifier><identifier>PMID: 11071041</identifier><language>eng</language><publisher>Oxford, UK: Elsevier SAS</publisher><subject>3-thia fatty acids ; Acyl-CoA Oxidase ; Animals ; Carnitine O-Palmitoyltransferase - genetics ; Carnitine O-Palmitoyltransferase - metabolism ; carnitine palmitoyltransferase ; Diaphragm - cytology ; Diaphragm - drug effects ; Diaphragm - enzymology ; Diaphragm - metabolism ; Docosahexaenoic Acids - administration & dosage ; Docosahexaenoic Acids - pharmacology ; Eicosapentaenoic Acid - administration & dosage ; Eicosapentaenoic Acid - pharmacology ; Fatty Acids - administration & dosage ; Fatty Acids - pharmacology ; fatty acyl-CoA oxidase ; gene expression ; Gene Expression Regulation, Enzymologic - drug effects ; heart ; Hepatocytes - drug effects ; Hepatocytes - enzymology ; Hepatocytes - metabolism ; Hypolipidemic Agents - administration & dosage ; Hypolipidemic Agents - pharmacology ; liver ; Liver - cytology ; Liver - drug effects ; Liver - enzymology ; Liver - metabolism ; Male ; Microscopy, Electron ; Mitochondria - drug effects ; Mitochondria - enzymology ; Mitochondria - genetics ; Mitochondria - metabolism ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - enzymology ; Muscle Fibers, Skeletal - metabolism ; Muscle, Skeletal - cytology ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - enzymology ; Muscle, Skeletal - metabolism ; Myocardium - cytology ; Myocardium - enzymology ; Myocardium - metabolism ; omega-3-fatty acids ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Particle Size ; Peroxisomes - drug effects ; Peroxisomes - enzymology ; Peroxisomes - metabolism ; Peroxisomes - ultrastructure ; Rats ; Rats, Wistar ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; skeletal muscle ; Sulfides - administration & dosage ; Sulfides - pharmacology</subject><ispartof>Biology of the cell, 2000-08, Vol.92 (5), p.317-329</ispartof><rights>2000 Éditions scientifiques et médicales Elsevier SAS</rights><rights>2000 Société Française des Microscopies and Société Biologie Cellulaire de France</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5639-10c89965974804732597e83aeecaa9d82c942c3f362fcef60353530e932caa403</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1016%2FS0248-4900%2800%2901077-7$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1016%2FS0248-4900%2800%2901077-7$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11071041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Totland, Geir K</creatorcontrib><creatorcontrib>Madsen, Lise</creatorcontrib><creatorcontrib>Klementsen, Beate</creatorcontrib><creatorcontrib>Vaagenes, Hege</creatorcontrib><creatorcontrib>Kryvi, Harald</creatorcontrib><creatorcontrib>Frøyland, Livar</creatorcontrib><creatorcontrib>Hexeberg, Sofie</creatorcontrib><creatorcontrib>Berge, Rolf K</creatorcontrib><title>Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids</title><title>Biology of the cell</title><addtitle>Biol Cell</addtitle><description>Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle fibers in both the diaphragm and soleus muscle, and the size distribution of mitochondrial areas followed a similar pattern. Only the 3-thia fatty acid induced mitochondrial growth in type II muscle fibers. The mean area occupied by the mitochondria and the size distribution of mitochondrial areas in both fiber types were highly similar in DHA-treated and control animals. Only the 3-thia fatty acid increased the gene-expression of carnitine palmitoyltransferase (CPT)-II in the diaphragm. In the heart, however, the gene expression decreased. In hepatocytes an increase in the mean size of mitochondria was observed after EPA treatment, concomitant with an increase in mitochondrial CPT-II gene expression. Administration of 2-methyl-substituted EPA (methyl-EPA) induced a higher rate of growth of mitochondria than EPA. At the peroxisomal level in the hepatocytes a 3-thia fatty acid, EPA, and DHA increased the areal fraction concomitant with the induction of gene expression of peroxisomal fatty acyl-CoA oxidase (FAO). In the diaphragm, mRNA levels of FAO were not affected by EPA or DHA treatment, whereas gene expression was significantly increased after 3-thia fatty acid treatment. In the heart, both 3-thia fatty acid, EPA and DHA tended to decrease the levels of FAO mRNA. The areal fraction of fat droplets in all three tissue types was significantly lower in the groups treated with 3-thia fatty acid. In the group treated with EPA a lower areal fraction of fat droplets was observed, while the DHA group was similar to the control. This indicates that EPA and DHA have different effects on mitochondrial biogenesis.</description><subject>3-thia fatty acids</subject><subject>Acyl-CoA Oxidase</subject><subject>Animals</subject><subject>Carnitine O-Palmitoyltransferase - genetics</subject><subject>Carnitine O-Palmitoyltransferase - metabolism</subject><subject>carnitine palmitoyltransferase</subject><subject>Diaphragm - cytology</subject><subject>Diaphragm - drug effects</subject><subject>Diaphragm - enzymology</subject><subject>Diaphragm - metabolism</subject><subject>Docosahexaenoic Acids - administration & dosage</subject><subject>Docosahexaenoic Acids - pharmacology</subject><subject>Eicosapentaenoic Acid - administration & dosage</subject><subject>Eicosapentaenoic Acid - pharmacology</subject><subject>Fatty Acids - administration & dosage</subject><subject>Fatty Acids - pharmacology</subject><subject>fatty acyl-CoA oxidase</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Enzymologic - drug effects</subject><subject>heart</subject><subject>Hepatocytes - drug effects</subject><subject>Hepatocytes - enzymology</subject><subject>Hepatocytes - metabolism</subject><subject>Hypolipidemic Agents - administration & dosage</subject><subject>Hypolipidemic Agents - pharmacology</subject><subject>liver</subject><subject>Liver - cytology</subject><subject>Liver - drug effects</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Microscopy, Electron</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - enzymology</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - enzymology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Myocardium - cytology</subject><subject>Myocardium - enzymology</subject><subject>Myocardium - metabolism</subject><subject>omega-3-fatty acids</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Particle Size</subject><subject>Peroxisomes - drug effects</subject><subject>Peroxisomes - enzymology</subject><subject>Peroxisomes - metabolism</subject><subject>Peroxisomes - ultrastructure</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>skeletal muscle</subject><subject>Sulfides - administration & dosage</subject><subject>Sulfides - pharmacology</subject><issn>0248-4900</issn><issn>1768-322X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkVtvFCEYhonR2LX6EzRcGU0c5TAnemPqRFvjxhoPae8IZb5xscwwAlt3fpd_UGZ3s15qIIHA83wcXoQeU_KSElq--kJYXme5IOQZIc8JJVWVVXfQglZlnXHGru6ixQE5Qg9C-EEIyUVd3EdHNOGU5HSBfn_yzpoOvIrGDdh1uDfR6ZUbWm8UVkOLv8MAGDajhxD2jFZ-MNGk9VHZWZhs9GoIc50AW6tTMU5Y6clmjTvFbmPaecsMOB2Fww1YiMrifh20hRd4BcrHrWjNLXh8PeHVNKarjaaF3uhDPdOGh-hep2yAR_vxGH179_Zrc54tL87eN6fLTBclFxkluhaiLESV1ySvOEszqLkC0EqJtmZa5Ezzjpes09CVhBepERCcJSAn_Bg93dUdvfu5hhBlb4IGa9UAbh1kxbgoWV4ksNiB2rsQPHRy9KZXfpKUyDktuU1LzlHIuc9pySp5T_YHrK97aP9a-3gScLIDfhkL0_9VlW8uGloKkeRsJ5sQYXOQlb-RZcWrQl5-PJPkM1-eN5dX8kPiX-94SH96a8DLoA0MGlrjQUfZOvOP9_wBFqbIOg</recordid><startdate>200008</startdate><enddate>200008</enddate><creator>Totland, Geir K</creator><creator>Madsen, Lise</creator><creator>Klementsen, Beate</creator><creator>Vaagenes, Hege</creator><creator>Kryvi, Harald</creator><creator>Frøyland, Livar</creator><creator>Hexeberg, Sofie</creator><creator>Berge, Rolf K</creator><general>Elsevier SAS</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200008</creationdate><title>Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids</title><author>Totland, Geir K ; Madsen, Lise ; Klementsen, Beate ; Vaagenes, Hege ; Kryvi, Harald ; Frøyland, Livar ; Hexeberg, Sofie ; Berge, Rolf K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5639-10c89965974804732597e83aeecaa9d82c942c3f362fcef60353530e932caa403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>3-thia fatty acids</topic><topic>Acyl-CoA Oxidase</topic><topic>Animals</topic><topic>Carnitine O-Palmitoyltransferase - genetics</topic><topic>Carnitine O-Palmitoyltransferase - metabolism</topic><topic>carnitine palmitoyltransferase</topic><topic>Diaphragm - cytology</topic><topic>Diaphragm - drug effects</topic><topic>Diaphragm - enzymology</topic><topic>Diaphragm - metabolism</topic><topic>Docosahexaenoic Acids - administration & dosage</topic><topic>Docosahexaenoic Acids - pharmacology</topic><topic>Eicosapentaenoic Acid - administration & dosage</topic><topic>Eicosapentaenoic Acid - pharmacology</topic><topic>Fatty Acids - administration & dosage</topic><topic>Fatty Acids - pharmacology</topic><topic>fatty acyl-CoA oxidase</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Enzymologic - drug effects</topic><topic>heart</topic><topic>Hepatocytes - drug effects</topic><topic>Hepatocytes - enzymology</topic><topic>Hepatocytes - metabolism</topic><topic>Hypolipidemic Agents - administration & dosage</topic><topic>Hypolipidemic Agents - pharmacology</topic><topic>liver</topic><topic>Liver - cytology</topic><topic>Liver - drug effects</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Microscopy, Electron</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - enzymology</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - enzymology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Myocardium - cytology</topic><topic>Myocardium - enzymology</topic><topic>Myocardium - metabolism</topic><topic>omega-3-fatty acids</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Particle Size</topic><topic>Peroxisomes - drug effects</topic><topic>Peroxisomes - enzymology</topic><topic>Peroxisomes - metabolism</topic><topic>Peroxisomes - ultrastructure</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>skeletal muscle</topic><topic>Sulfides - administration & dosage</topic><topic>Sulfides - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Totland, Geir K</creatorcontrib><creatorcontrib>Madsen, Lise</creatorcontrib><creatorcontrib>Klementsen, Beate</creatorcontrib><creatorcontrib>Vaagenes, Hege</creatorcontrib><creatorcontrib>Kryvi, Harald</creatorcontrib><creatorcontrib>Frøyland, Livar</creatorcontrib><creatorcontrib>Hexeberg, Sofie</creatorcontrib><creatorcontrib>Berge, Rolf K</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Totland, Geir K</au><au>Madsen, Lise</au><au>Klementsen, Beate</au><au>Vaagenes, Hege</au><au>Kryvi, Harald</au><au>Frøyland, Livar</au><au>Hexeberg, Sofie</au><au>Berge, Rolf K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids</atitle><jtitle>Biology of the cell</jtitle><addtitle>Biol Cell</addtitle><date>2000-08</date><risdate>2000</risdate><volume>92</volume><issue>5</issue><spage>317</spage><epage>329</epage><pages>317-329</pages><issn>0248-4900</issn><eissn>1768-322X</eissn><abstract>Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle fibers in both the diaphragm and soleus muscle, and the size distribution of mitochondrial areas followed a similar pattern. Only the 3-thia fatty acid induced mitochondrial growth in type II muscle fibers. The mean area occupied by the mitochondria and the size distribution of mitochondrial areas in both fiber types were highly similar in DHA-treated and control animals. Only the 3-thia fatty acid increased the gene-expression of carnitine palmitoyltransferase (CPT)-II in the diaphragm. In the heart, however, the gene expression decreased. In hepatocytes an increase in the mean size of mitochondria was observed after EPA treatment, concomitant with an increase in mitochondrial CPT-II gene expression. Administration of 2-methyl-substituted EPA (methyl-EPA) induced a higher rate of growth of mitochondria than EPA. At the peroxisomal level in the hepatocytes a 3-thia fatty acid, EPA, and DHA increased the areal fraction concomitant with the induction of gene expression of peroxisomal fatty acyl-CoA oxidase (FAO). In the diaphragm, mRNA levels of FAO were not affected by EPA or DHA treatment, whereas gene expression was significantly increased after 3-thia fatty acid treatment. In the heart, both 3-thia fatty acid, EPA and DHA tended to decrease the levels of FAO mRNA. The areal fraction of fat droplets in all three tissue types was significantly lower in the groups treated with 3-thia fatty acid. In the group treated with EPA a lower areal fraction of fat droplets was observed, while the DHA group was similar to the control. This indicates that EPA and DHA have different effects on mitochondrial biogenesis.</abstract><cop>Oxford, UK</cop><pub>Elsevier SAS</pub><pmid>11071041</pmid><doi>10.1016/S0248-4900(00)01077-7</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0248-4900 |
ispartof | Biology of the cell, 2000-08, Vol.92 (5), p.317-329 |
issn | 0248-4900 1768-322X |
language | eng |
recordid | cdi_proquest_miscellaneous_72396245 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | 3-thia fatty acids Acyl-CoA Oxidase Animals Carnitine O-Palmitoyltransferase - genetics Carnitine O-Palmitoyltransferase - metabolism carnitine palmitoyltransferase Diaphragm - cytology Diaphragm - drug effects Diaphragm - enzymology Diaphragm - metabolism Docosahexaenoic Acids - administration & dosage Docosahexaenoic Acids - pharmacology Eicosapentaenoic Acid - administration & dosage Eicosapentaenoic Acid - pharmacology Fatty Acids - administration & dosage Fatty Acids - pharmacology fatty acyl-CoA oxidase gene expression Gene Expression Regulation, Enzymologic - drug effects heart Hepatocytes - drug effects Hepatocytes - enzymology Hepatocytes - metabolism Hypolipidemic Agents - administration & dosage Hypolipidemic Agents - pharmacology liver Liver - cytology Liver - drug effects Liver - enzymology Liver - metabolism Male Microscopy, Electron Mitochondria - drug effects Mitochondria - enzymology Mitochondria - genetics Mitochondria - metabolism Muscle Fibers, Skeletal - cytology Muscle Fibers, Skeletal - drug effects Muscle Fibers, Skeletal - enzymology Muscle Fibers, Skeletal - metabolism Muscle, Skeletal - cytology Muscle, Skeletal - drug effects Muscle, Skeletal - enzymology Muscle, Skeletal - metabolism Myocardium - cytology Myocardium - enzymology Myocardium - metabolism omega-3-fatty acids Oxidoreductases - genetics Oxidoreductases - metabolism Particle Size Peroxisomes - drug effects Peroxisomes - enzymology Peroxisomes - metabolism Peroxisomes - ultrastructure Rats Rats, Wistar RNA, Messenger - genetics RNA, Messenger - metabolism skeletal muscle Sulfides - administration & dosage Sulfides - pharmacology |
title | Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proliferation%20of%20mitochondria%20and%20gene%20expression%20of%20carnitine%20palmitoyltransferase%20and%20fatty%20acyl-CoA%20oxidase%20in%20rat%20skeletal%20muscle,%20heart%20and%20liver%20by%20hypolipidemic%20fatty%20acids&rft.jtitle=Biology%20of%20the%20cell&rft.au=Totland,%20Geir%20K&rft.date=2000-08&rft.volume=92&rft.issue=5&rft.spage=317&rft.epage=329&rft.pages=317-329&rft.issn=0248-4900&rft.eissn=1768-322X&rft_id=info:doi/10.1016/S0248-4900(00)01077-7&rft_dat=%3Cproquest_cross%3E72396245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72396245&rft_id=info:pmid/11071041&rft_els_id=S0248490000010777&rfr_iscdi=true |