Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids

Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biology of the cell 2000-08, Vol.92 (5), p.317-329
Hauptverfasser: Totland, Geir K, Madsen, Lise, Klementsen, Beate, Vaagenes, Hege, Kryvi, Harald, Frøyland, Livar, Hexeberg, Sofie, Berge, Rolf K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue 5
container_start_page 317
container_title Biology of the cell
container_volume 92
creator Totland, Geir K
Madsen, Lise
Klementsen, Beate
Vaagenes, Hege
Kryvi, Harald
Frøyland, Livar
Hexeberg, Sofie
Berge, Rolf K
description Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle fibers in both the diaphragm and soleus muscle, and the size distribution of mitochondrial areas followed a similar pattern. Only the 3-thia fatty acid induced mitochondrial growth in type II muscle fibers. The mean area occupied by the mitochondria and the size distribution of mitochondrial areas in both fiber types were highly similar in DHA-treated and control animals. Only the 3-thia fatty acid increased the gene-expression of carnitine palmitoyltransferase (CPT)-II in the diaphragm. In the heart, however, the gene expression decreased. In hepatocytes an increase in the mean size of mitochondria was observed after EPA treatment, concomitant with an increase in mitochondrial CPT-II gene expression. Administration of 2-methyl-substituted EPA (methyl-EPA) induced a higher rate of growth of mitochondria than EPA. At the peroxisomal level in the hepatocytes a 3-thia fatty acid, EPA, and DHA increased the areal fraction concomitant with the induction of gene expression of peroxisomal fatty acyl-CoA oxidase (FAO). In the diaphragm, mRNA levels of FAO were not affected by EPA or DHA treatment, whereas gene expression was significantly increased after 3-thia fatty acid treatment. In the heart, both 3-thia fatty acid, EPA and DHA tended to decrease the levels of FAO mRNA. The areal fraction of fat droplets in all three tissue types was significantly lower in the groups treated with 3-thia fatty acid. In the group treated with EPA a lower areal fraction of fat droplets was observed, while the DHA group was similar to the control. This indicates that EPA and DHA have different effects on mitochondrial biogenesis.
doi_str_mv 10.1016/S0248-4900(00)01077-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72396245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0248490000010777</els_id><sourcerecordid>72396245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5639-10c89965974804732597e83aeecaa9d82c942c3f362fcef60353530e932caa403</originalsourceid><addsrcrecordid>eNqNkVtvFCEYhonR2LX6EzRcGU0c5TAnemPqRFvjxhoPae8IZb5xscwwAlt3fpd_UGZ3s15qIIHA83wcXoQeU_KSElq--kJYXme5IOQZIc8JJVWVVXfQglZlnXHGru6ixQE5Qg9C-EEIyUVd3EdHNOGU5HSBfn_yzpoOvIrGDdh1uDfR6ZUbWm8UVkOLv8MAGDajhxD2jFZ-MNGk9VHZWZhs9GoIc50AW6tTMU5Y6clmjTvFbmPaecsMOB2Fww1YiMrifh20hRd4BcrHrWjNLXh8PeHVNKarjaaF3uhDPdOGh-hep2yAR_vxGH179_Zrc54tL87eN6fLTBclFxkluhaiLESV1ySvOEszqLkC0EqJtmZa5Ezzjpes09CVhBepERCcJSAn_Bg93dUdvfu5hhBlb4IGa9UAbh1kxbgoWV4ksNiB2rsQPHRy9KZXfpKUyDktuU1LzlHIuc9pySp5T_YHrK97aP9a-3gScLIDfhkL0_9VlW8uGloKkeRsJ5sQYXOQlb-RZcWrQl5-PJPkM1-eN5dX8kPiX-94SH96a8DLoA0MGlrjQUfZOvOP9_wBFqbIOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72396245</pqid></control><display><type>article</type><title>Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Totland, Geir K ; Madsen, Lise ; Klementsen, Beate ; Vaagenes, Hege ; Kryvi, Harald ; Frøyland, Livar ; Hexeberg, Sofie ; Berge, Rolf K</creator><creatorcontrib>Totland, Geir K ; Madsen, Lise ; Klementsen, Beate ; Vaagenes, Hege ; Kryvi, Harald ; Frøyland, Livar ; Hexeberg, Sofie ; Berge, Rolf K</creatorcontrib><description>Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle fibers in both the diaphragm and soleus muscle, and the size distribution of mitochondrial areas followed a similar pattern. Only the 3-thia fatty acid induced mitochondrial growth in type II muscle fibers. The mean area occupied by the mitochondria and the size distribution of mitochondrial areas in both fiber types were highly similar in DHA-treated and control animals. Only the 3-thia fatty acid increased the gene-expression of carnitine palmitoyltransferase (CPT)-II in the diaphragm. In the heart, however, the gene expression decreased. In hepatocytes an increase in the mean size of mitochondria was observed after EPA treatment, concomitant with an increase in mitochondrial CPT-II gene expression. Administration of 2-methyl-substituted EPA (methyl-EPA) induced a higher rate of growth of mitochondria than EPA. At the peroxisomal level in the hepatocytes a 3-thia fatty acid, EPA, and DHA increased the areal fraction concomitant with the induction of gene expression of peroxisomal fatty acyl-CoA oxidase (FAO). In the diaphragm, mRNA levels of FAO were not affected by EPA or DHA treatment, whereas gene expression was significantly increased after 3-thia fatty acid treatment. In the heart, both 3-thia fatty acid, EPA and DHA tended to decrease the levels of FAO mRNA. The areal fraction of fat droplets in all three tissue types was significantly lower in the groups treated with 3-thia fatty acid. In the group treated with EPA a lower areal fraction of fat droplets was observed, while the DHA group was similar to the control. This indicates that EPA and DHA have different effects on mitochondrial biogenesis.</description><identifier>ISSN: 0248-4900</identifier><identifier>EISSN: 1768-322X</identifier><identifier>DOI: 10.1016/S0248-4900(00)01077-7</identifier><identifier>PMID: 11071041</identifier><language>eng</language><publisher>Oxford, UK: Elsevier SAS</publisher><subject>3-thia fatty acids ; Acyl-CoA Oxidase ; Animals ; Carnitine O-Palmitoyltransferase - genetics ; Carnitine O-Palmitoyltransferase - metabolism ; carnitine palmitoyltransferase ; Diaphragm - cytology ; Diaphragm - drug effects ; Diaphragm - enzymology ; Diaphragm - metabolism ; Docosahexaenoic Acids - administration &amp; dosage ; Docosahexaenoic Acids - pharmacology ; Eicosapentaenoic Acid - administration &amp; dosage ; Eicosapentaenoic Acid - pharmacology ; Fatty Acids - administration &amp; dosage ; Fatty Acids - pharmacology ; fatty acyl-CoA oxidase ; gene expression ; Gene Expression Regulation, Enzymologic - drug effects ; heart ; Hepatocytes - drug effects ; Hepatocytes - enzymology ; Hepatocytes - metabolism ; Hypolipidemic Agents - administration &amp; dosage ; Hypolipidemic Agents - pharmacology ; liver ; Liver - cytology ; Liver - drug effects ; Liver - enzymology ; Liver - metabolism ; Male ; Microscopy, Electron ; Mitochondria - drug effects ; Mitochondria - enzymology ; Mitochondria - genetics ; Mitochondria - metabolism ; Muscle Fibers, Skeletal - cytology ; Muscle Fibers, Skeletal - drug effects ; Muscle Fibers, Skeletal - enzymology ; Muscle Fibers, Skeletal - metabolism ; Muscle, Skeletal - cytology ; Muscle, Skeletal - drug effects ; Muscle, Skeletal - enzymology ; Muscle, Skeletal - metabolism ; Myocardium - cytology ; Myocardium - enzymology ; Myocardium - metabolism ; omega-3-fatty acids ; Oxidoreductases - genetics ; Oxidoreductases - metabolism ; Particle Size ; Peroxisomes - drug effects ; Peroxisomes - enzymology ; Peroxisomes - metabolism ; Peroxisomes - ultrastructure ; Rats ; Rats, Wistar ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; skeletal muscle ; Sulfides - administration &amp; dosage ; Sulfides - pharmacology</subject><ispartof>Biology of the cell, 2000-08, Vol.92 (5), p.317-329</ispartof><rights>2000 Éditions scientifiques et médicales Elsevier SAS</rights><rights>2000 Société Française des Microscopies and Société Biologie Cellulaire de France</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5639-10c89965974804732597e83aeecaa9d82c942c3f362fcef60353530e932caa403</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1016%2FS0248-4900%2800%2901077-7$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1016%2FS0248-4900%2800%2901077-7$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11071041$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Totland, Geir K</creatorcontrib><creatorcontrib>Madsen, Lise</creatorcontrib><creatorcontrib>Klementsen, Beate</creatorcontrib><creatorcontrib>Vaagenes, Hege</creatorcontrib><creatorcontrib>Kryvi, Harald</creatorcontrib><creatorcontrib>Frøyland, Livar</creatorcontrib><creatorcontrib>Hexeberg, Sofie</creatorcontrib><creatorcontrib>Berge, Rolf K</creatorcontrib><title>Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids</title><title>Biology of the cell</title><addtitle>Biol Cell</addtitle><description>Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle fibers in both the diaphragm and soleus muscle, and the size distribution of mitochondrial areas followed a similar pattern. Only the 3-thia fatty acid induced mitochondrial growth in type II muscle fibers. The mean area occupied by the mitochondria and the size distribution of mitochondrial areas in both fiber types were highly similar in DHA-treated and control animals. Only the 3-thia fatty acid increased the gene-expression of carnitine palmitoyltransferase (CPT)-II in the diaphragm. In the heart, however, the gene expression decreased. In hepatocytes an increase in the mean size of mitochondria was observed after EPA treatment, concomitant with an increase in mitochondrial CPT-II gene expression. Administration of 2-methyl-substituted EPA (methyl-EPA) induced a higher rate of growth of mitochondria than EPA. At the peroxisomal level in the hepatocytes a 3-thia fatty acid, EPA, and DHA increased the areal fraction concomitant with the induction of gene expression of peroxisomal fatty acyl-CoA oxidase (FAO). In the diaphragm, mRNA levels of FAO were not affected by EPA or DHA treatment, whereas gene expression was significantly increased after 3-thia fatty acid treatment. In the heart, both 3-thia fatty acid, EPA and DHA tended to decrease the levels of FAO mRNA. The areal fraction of fat droplets in all three tissue types was significantly lower in the groups treated with 3-thia fatty acid. In the group treated with EPA a lower areal fraction of fat droplets was observed, while the DHA group was similar to the control. This indicates that EPA and DHA have different effects on mitochondrial biogenesis.</description><subject>3-thia fatty acids</subject><subject>Acyl-CoA Oxidase</subject><subject>Animals</subject><subject>Carnitine O-Palmitoyltransferase - genetics</subject><subject>Carnitine O-Palmitoyltransferase - metabolism</subject><subject>carnitine palmitoyltransferase</subject><subject>Diaphragm - cytology</subject><subject>Diaphragm - drug effects</subject><subject>Diaphragm - enzymology</subject><subject>Diaphragm - metabolism</subject><subject>Docosahexaenoic Acids - administration &amp; dosage</subject><subject>Docosahexaenoic Acids - pharmacology</subject><subject>Eicosapentaenoic Acid - administration &amp; dosage</subject><subject>Eicosapentaenoic Acid - pharmacology</subject><subject>Fatty Acids - administration &amp; dosage</subject><subject>Fatty Acids - pharmacology</subject><subject>fatty acyl-CoA oxidase</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Enzymologic - drug effects</subject><subject>heart</subject><subject>Hepatocytes - drug effects</subject><subject>Hepatocytes - enzymology</subject><subject>Hepatocytes - metabolism</subject><subject>Hypolipidemic Agents - administration &amp; dosage</subject><subject>Hypolipidemic Agents - pharmacology</subject><subject>liver</subject><subject>Liver - cytology</subject><subject>Liver - drug effects</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Microscopy, Electron</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Muscle Fibers, Skeletal - cytology</subject><subject>Muscle Fibers, Skeletal - drug effects</subject><subject>Muscle Fibers, Skeletal - enzymology</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - drug effects</subject><subject>Muscle, Skeletal - enzymology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Myocardium - cytology</subject><subject>Myocardium - enzymology</subject><subject>Myocardium - metabolism</subject><subject>omega-3-fatty acids</subject><subject>Oxidoreductases - genetics</subject><subject>Oxidoreductases - metabolism</subject><subject>Particle Size</subject><subject>Peroxisomes - drug effects</subject><subject>Peroxisomes - enzymology</subject><subject>Peroxisomes - metabolism</subject><subject>Peroxisomes - ultrastructure</subject><subject>Rats</subject><subject>Rats, Wistar</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>skeletal muscle</subject><subject>Sulfides - administration &amp; dosage</subject><subject>Sulfides - pharmacology</subject><issn>0248-4900</issn><issn>1768-322X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkVtvFCEYhonR2LX6EzRcGU0c5TAnemPqRFvjxhoPae8IZb5xscwwAlt3fpd_UGZ3s15qIIHA83wcXoQeU_KSElq--kJYXme5IOQZIc8JJVWVVXfQglZlnXHGru6ixQE5Qg9C-EEIyUVd3EdHNOGU5HSBfn_yzpoOvIrGDdh1uDfR6ZUbWm8UVkOLv8MAGDajhxD2jFZ-MNGk9VHZWZhs9GoIc50AW6tTMU5Y6clmjTvFbmPaecsMOB2Fww1YiMrifh20hRd4BcrHrWjNLXh8PeHVNKarjaaF3uhDPdOGh-hep2yAR_vxGH179_Zrc54tL87eN6fLTBclFxkluhaiLESV1ySvOEszqLkC0EqJtmZa5Ezzjpes09CVhBepERCcJSAn_Bg93dUdvfu5hhBlb4IGa9UAbh1kxbgoWV4ksNiB2rsQPHRy9KZXfpKUyDktuU1LzlHIuc9pySp5T_YHrK97aP9a-3gScLIDfhkL0_9VlW8uGloKkeRsJ5sQYXOQlb-RZcWrQl5-PJPkM1-eN5dX8kPiX-94SH96a8DLoA0MGlrjQUfZOvOP9_wBFqbIOg</recordid><startdate>200008</startdate><enddate>200008</enddate><creator>Totland, Geir K</creator><creator>Madsen, Lise</creator><creator>Klementsen, Beate</creator><creator>Vaagenes, Hege</creator><creator>Kryvi, Harald</creator><creator>Frøyland, Livar</creator><creator>Hexeberg, Sofie</creator><creator>Berge, Rolf K</creator><general>Elsevier SAS</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200008</creationdate><title>Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids</title><author>Totland, Geir K ; Madsen, Lise ; Klementsen, Beate ; Vaagenes, Hege ; Kryvi, Harald ; Frøyland, Livar ; Hexeberg, Sofie ; Berge, Rolf K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5639-10c89965974804732597e83aeecaa9d82c942c3f362fcef60353530e932caa403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>3-thia fatty acids</topic><topic>Acyl-CoA Oxidase</topic><topic>Animals</topic><topic>Carnitine O-Palmitoyltransferase - genetics</topic><topic>Carnitine O-Palmitoyltransferase - metabolism</topic><topic>carnitine palmitoyltransferase</topic><topic>Diaphragm - cytology</topic><topic>Diaphragm - drug effects</topic><topic>Diaphragm - enzymology</topic><topic>Diaphragm - metabolism</topic><topic>Docosahexaenoic Acids - administration &amp; dosage</topic><topic>Docosahexaenoic Acids - pharmacology</topic><topic>Eicosapentaenoic Acid - administration &amp; dosage</topic><topic>Eicosapentaenoic Acid - pharmacology</topic><topic>Fatty Acids - administration &amp; dosage</topic><topic>Fatty Acids - pharmacology</topic><topic>fatty acyl-CoA oxidase</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Enzymologic - drug effects</topic><topic>heart</topic><topic>Hepatocytes - drug effects</topic><topic>Hepatocytes - enzymology</topic><topic>Hepatocytes - metabolism</topic><topic>Hypolipidemic Agents - administration &amp; dosage</topic><topic>Hypolipidemic Agents - pharmacology</topic><topic>liver</topic><topic>Liver - cytology</topic><topic>Liver - drug effects</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Microscopy, Electron</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Muscle Fibers, Skeletal - cytology</topic><topic>Muscle Fibers, Skeletal - drug effects</topic><topic>Muscle Fibers, Skeletal - enzymology</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - drug effects</topic><topic>Muscle, Skeletal - enzymology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Myocardium - cytology</topic><topic>Myocardium - enzymology</topic><topic>Myocardium - metabolism</topic><topic>omega-3-fatty acids</topic><topic>Oxidoreductases - genetics</topic><topic>Oxidoreductases - metabolism</topic><topic>Particle Size</topic><topic>Peroxisomes - drug effects</topic><topic>Peroxisomes - enzymology</topic><topic>Peroxisomes - metabolism</topic><topic>Peroxisomes - ultrastructure</topic><topic>Rats</topic><topic>Rats, Wistar</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>skeletal muscle</topic><topic>Sulfides - administration &amp; dosage</topic><topic>Sulfides - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Totland, Geir K</creatorcontrib><creatorcontrib>Madsen, Lise</creatorcontrib><creatorcontrib>Klementsen, Beate</creatorcontrib><creatorcontrib>Vaagenes, Hege</creatorcontrib><creatorcontrib>Kryvi, Harald</creatorcontrib><creatorcontrib>Frøyland, Livar</creatorcontrib><creatorcontrib>Hexeberg, Sofie</creatorcontrib><creatorcontrib>Berge, Rolf K</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biology of the cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Totland, Geir K</au><au>Madsen, Lise</au><au>Klementsen, Beate</au><au>Vaagenes, Hege</au><au>Kryvi, Harald</au><au>Frøyland, Livar</au><au>Hexeberg, Sofie</au><au>Berge, Rolf K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids</atitle><jtitle>Biology of the cell</jtitle><addtitle>Biol Cell</addtitle><date>2000-08</date><risdate>2000</risdate><volume>92</volume><issue>5</issue><spage>317</spage><epage>329</epage><pages>317-329</pages><issn>0248-4900</issn><eissn>1768-322X</eissn><abstract>Morphological and biochemical effects were induced at the subcellular level in the skeletal muscle, heart and liver of male rats as a result of feeding with EPA, DHA, and 3-thia fatty acids. The 3-thia fatty acid, tetradecylthioacetic acid (TTA) and EPA induced mitochondrial growth in type I muscle fibers in both the diaphragm and soleus muscle, and the size distribution of mitochondrial areas followed a similar pattern. Only the 3-thia fatty acid induced mitochondrial growth in type II muscle fibers. The mean area occupied by the mitochondria and the size distribution of mitochondrial areas in both fiber types were highly similar in DHA-treated and control animals. Only the 3-thia fatty acid increased the gene-expression of carnitine palmitoyltransferase (CPT)-II in the diaphragm. In the heart, however, the gene expression decreased. In hepatocytes an increase in the mean size of mitochondria was observed after EPA treatment, concomitant with an increase in mitochondrial CPT-II gene expression. Administration of 2-methyl-substituted EPA (methyl-EPA) induced a higher rate of growth of mitochondria than EPA. At the peroxisomal level in the hepatocytes a 3-thia fatty acid, EPA, and DHA increased the areal fraction concomitant with the induction of gene expression of peroxisomal fatty acyl-CoA oxidase (FAO). In the diaphragm, mRNA levels of FAO were not affected by EPA or DHA treatment, whereas gene expression was significantly increased after 3-thia fatty acid treatment. In the heart, both 3-thia fatty acid, EPA and DHA tended to decrease the levels of FAO mRNA. The areal fraction of fat droplets in all three tissue types was significantly lower in the groups treated with 3-thia fatty acid. In the group treated with EPA a lower areal fraction of fat droplets was observed, while the DHA group was similar to the control. This indicates that EPA and DHA have different effects on mitochondrial biogenesis.</abstract><cop>Oxford, UK</cop><pub>Elsevier SAS</pub><pmid>11071041</pmid><doi>10.1016/S0248-4900(00)01077-7</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0248-4900
ispartof Biology of the cell, 2000-08, Vol.92 (5), p.317-329
issn 0248-4900
1768-322X
language eng
recordid cdi_proquest_miscellaneous_72396245
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects 3-thia fatty acids
Acyl-CoA Oxidase
Animals
Carnitine O-Palmitoyltransferase - genetics
Carnitine O-Palmitoyltransferase - metabolism
carnitine palmitoyltransferase
Diaphragm - cytology
Diaphragm - drug effects
Diaphragm - enzymology
Diaphragm - metabolism
Docosahexaenoic Acids - administration & dosage
Docosahexaenoic Acids - pharmacology
Eicosapentaenoic Acid - administration & dosage
Eicosapentaenoic Acid - pharmacology
Fatty Acids - administration & dosage
Fatty Acids - pharmacology
fatty acyl-CoA oxidase
gene expression
Gene Expression Regulation, Enzymologic - drug effects
heart
Hepatocytes - drug effects
Hepatocytes - enzymology
Hepatocytes - metabolism
Hypolipidemic Agents - administration & dosage
Hypolipidemic Agents - pharmacology
liver
Liver - cytology
Liver - drug effects
Liver - enzymology
Liver - metabolism
Male
Microscopy, Electron
Mitochondria - drug effects
Mitochondria - enzymology
Mitochondria - genetics
Mitochondria - metabolism
Muscle Fibers, Skeletal - cytology
Muscle Fibers, Skeletal - drug effects
Muscle Fibers, Skeletal - enzymology
Muscle Fibers, Skeletal - metabolism
Muscle, Skeletal - cytology
Muscle, Skeletal - drug effects
Muscle, Skeletal - enzymology
Muscle, Skeletal - metabolism
Myocardium - cytology
Myocardium - enzymology
Myocardium - metabolism
omega-3-fatty acids
Oxidoreductases - genetics
Oxidoreductases - metabolism
Particle Size
Peroxisomes - drug effects
Peroxisomes - enzymology
Peroxisomes - metabolism
Peroxisomes - ultrastructure
Rats
Rats, Wistar
RNA, Messenger - genetics
RNA, Messenger - metabolism
skeletal muscle
Sulfides - administration & dosage
Sulfides - pharmacology
title Proliferation of mitochondria and gene expression of carnitine palmitoyltransferase and fatty acyl-CoA oxidase in rat skeletal muscle, heart and liver by hypolipidemic fatty acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proliferation%20of%20mitochondria%20and%20gene%20expression%20of%20carnitine%20palmitoyltransferase%20and%20fatty%20acyl-CoA%20oxidase%20in%20rat%20skeletal%20muscle,%20heart%20and%20liver%20by%20hypolipidemic%20fatty%20acids&rft.jtitle=Biology%20of%20the%20cell&rft.au=Totland,%20Geir%20K&rft.date=2000-08&rft.volume=92&rft.issue=5&rft.spage=317&rft.epage=329&rft.pages=317-329&rft.issn=0248-4900&rft.eissn=1768-322X&rft_id=info:doi/10.1016/S0248-4900(00)01077-7&rft_dat=%3Cproquest_cross%3E72396245%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72396245&rft_id=info:pmid/11071041&rft_els_id=S0248490000010777&rfr_iscdi=true