Folding-driven synthesis of oligomers
The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control mo-lecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional prot...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2001-12, Vol.414 (6866), p.889-893 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 893 |
---|---|
container_issue | 6866 |
container_start_page | 889 |
container_title | Nature (London) |
container_volume | 414 |
creator | Oh, Keunchan Jeong, Kyu-Sung Moore, Jeffrey S. |
description | The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control mo-lecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional protein conformation is long known
1
and has inspired the development of synthetic oligomers and polymers with the capacity to fold in a controlled manner
2
,
3
,
4
,
5
,
6
,
7
, but it remains challenging to design these so-called ‘foldamers’ so that they are capable of inducing or controlling chemical processes and interactions
8
,
9
. Here we show that the stability gained from folding can be used to control the synthesis of oligomers from short chain segments reversibly ligated through an imine metathesis reaction. That is, folding shifts the ligation equilibrium
10
,
11
,
12
,
13
in favour of conformationally ordered sequences, so that oligomers having the most stable solution structures form preferentially. Crystallization has previously been used to shift an equilibrium in order to indirectly influence the synthesis of small molecules
14
, but the present approach to selectively prepare macromolecules with stable conformations directly connects folding and synthesis, emphasizing molecular function rather than structure in polymer synthesis. |
doi_str_mv | 10.1038/414889a |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72392863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187934099</galeid><sourcerecordid>A187934099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-a8641d7b7c34afb3af6edb0245c30b87cebb8e3101938b87e405f57eac780da23</originalsourceid><addsrcrecordid>eNqF0uFr3CAUAHApG-3tOvYfjGPQdaOk02ii-Xgca1coG2wt-yjGPDNLoldNxvrfz-MC1ysdww_y9OdTHw-hNwSfE0zFJ0aYEJU6QDPCeJmxUvAXaIZxLjIsaHmEXsV4hzEuCGeH6IgQLlLAZ-jkwneNdW3WBPsb3CI-uOEXRBsX3ix8Z1vfQ4jH6KVRXYTX0zxHtxefb1Zfsutvl1er5XWmS1wNmRIlIw2vuaZMmZoqU0JT45wVmuJacA11LYASTCoqUgwMF6bgoHR6TqNyOkfvt3nXwd-PEAfZ26ih65QDP0bJc1rloqT_hbQgJS7YBr57Au_8GFz6hMwxY7wiqX5zlG1RqzqQ1hk_BKVbcBBU5x0Ym5aXRPCKMlxVu6R7Xq_tvXyMzp9BaTTQW_1s1o97B5IZ4M_QqjFGefXj-749-7dd3vxcfd3Xp1utg48xgJHrYHsVHiTBctM_cuqfJN9O5RrrHpqdmxomgZMJqKhVZ4Jy2sadozQ5sXEfti6mLddC2NX96Z1_AVy001g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204479110</pqid></control><display><type>article</type><title>Folding-driven synthesis of oligomers</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Oh, Keunchan ; Jeong, Kyu-Sung ; Moore, Jeffrey S.</creator><creatorcontrib>Oh, Keunchan ; Jeong, Kyu-Sung ; Moore, Jeffrey S.</creatorcontrib><description>The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control mo-lecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional protein conformation is long known
1
and has inspired the development of synthetic oligomers and polymers with the capacity to fold in a controlled manner
2
,
3
,
4
,
5
,
6
,
7
, but it remains challenging to design these so-called ‘foldamers’ so that they are capable of inducing or controlling chemical processes and interactions
8
,
9
. Here we show that the stability gained from folding can be used to control the synthesis of oligomers from short chain segments reversibly ligated through an imine metathesis reaction. That is, folding shifts the ligation equilibrium
10
,
11
,
12
,
13
in favour of conformationally ordered sequences, so that oligomers having the most stable solution structures form preferentially. Crystallization has previously been used to shift an equilibrium in order to indirectly influence the synthesis of small molecules
14
, but the present approach to selectively prepare macromolecules with stable conformations directly connects folding and synthesis, emphasizing molecular function rather than structure in polymer synthesis.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/414889a</identifier><identifier>PMID: 11780057</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Applied sciences ; Biopolymers - chemistry ; Catalysis ; Chemistry ; Crystallization ; Deoxyribonucleic acid ; DNA ; Enzymes ; Exact sciences and technology ; Humanities and Social Sciences ; Imines - chemistry ; letter ; Magnetic Resonance Spectroscopy ; Model compounds ; multidisciplinary ; Organic polymers ; Physicochemistry of polymers ; Polymers ; Protein Conformation ; Protein Folding ; Proteins ; Proteins - chemical synthesis ; Proteins - chemistry ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2001-12, Vol.414 (6866), p.889-893</ispartof><rights>Macmillan Magazines Ltd. 2001</rights><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2001 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Dec 20-Dec 27, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c609t-a8641d7b7c34afb3af6edb0245c30b87cebb8e3101938b87e405f57eac780da23</citedby><cites>FETCH-LOGICAL-c609t-a8641d7b7c34afb3af6edb0245c30b87cebb8e3101938b87e405f57eac780da23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/414889a$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/414889a$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13380087$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11780057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Keunchan</creatorcontrib><creatorcontrib>Jeong, Kyu-Sung</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><title>Folding-driven synthesis of oligomers</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control mo-lecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional protein conformation is long known
1
and has inspired the development of synthetic oligomers and polymers with the capacity to fold in a controlled manner
2
,
3
,
4
,
5
,
6
,
7
, but it remains challenging to design these so-called ‘foldamers’ so that they are capable of inducing or controlling chemical processes and interactions
8
,
9
. Here we show that the stability gained from folding can be used to control the synthesis of oligomers from short chain segments reversibly ligated through an imine metathesis reaction. That is, folding shifts the ligation equilibrium
10
,
11
,
12
,
13
in favour of conformationally ordered sequences, so that oligomers having the most stable solution structures form preferentially. Crystallization has previously been used to shift an equilibrium in order to indirectly influence the synthesis of small molecules
14
, but the present approach to selectively prepare macromolecules with stable conformations directly connects folding and synthesis, emphasizing molecular function rather than structure in polymer synthesis.</description><subject>Applied sciences</subject><subject>Biopolymers - chemistry</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Crystallization</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>Imines - chemistry</subject><subject>letter</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Model compounds</subject><subject>multidisciplinary</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Proteins - chemical synthesis</subject><subject>Proteins - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0uFr3CAUAHApG-3tOvYfjGPQdaOk02ii-Xgca1coG2wt-yjGPDNLoldNxvrfz-MC1ysdww_y9OdTHw-hNwSfE0zFJ0aYEJU6QDPCeJmxUvAXaIZxLjIsaHmEXsV4hzEuCGeH6IgQLlLAZ-jkwneNdW3WBPsb3CI-uOEXRBsX3ix8Z1vfQ4jH6KVRXYTX0zxHtxefb1Zfsutvl1er5XWmS1wNmRIlIw2vuaZMmZoqU0JT45wVmuJacA11LYASTCoqUgwMF6bgoHR6TqNyOkfvt3nXwd-PEAfZ26ih65QDP0bJc1rloqT_hbQgJS7YBr57Au_8GFz6hMwxY7wiqX5zlG1RqzqQ1hk_BKVbcBBU5x0Ym5aXRPCKMlxVu6R7Xq_tvXyMzp9BaTTQW_1s1o97B5IZ4M_QqjFGefXj-749-7dd3vxcfd3Xp1utg48xgJHrYHsVHiTBctM_cuqfJN9O5RrrHpqdmxomgZMJqKhVZ4Jy2sadozQ5sXEfti6mLddC2NX96Z1_AVy001g</recordid><startdate>20011220</startdate><enddate>20011220</enddate><creator>Oh, Keunchan</creator><creator>Jeong, Kyu-Sung</creator><creator>Moore, Jeffrey S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20011220</creationdate><title>Folding-driven synthesis of oligomers</title><author>Oh, Keunchan ; Jeong, Kyu-Sung ; Moore, Jeffrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-a8641d7b7c34afb3af6edb0245c30b87cebb8e3101938b87e405f57eac780da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Biopolymers - chemistry</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Crystallization</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>Imines - chemistry</topic><topic>letter</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Model compounds</topic><topic>multidisciplinary</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Proteins - chemical synthesis</topic><topic>Proteins - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Keunchan</creatorcontrib><creatorcontrib>Jeong, Kyu-Sung</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Keunchan</au><au>Jeong, Kyu-Sung</au><au>Moore, Jeffrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folding-driven synthesis of oligomers</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2001-12-20</date><risdate>2001</risdate><volume>414</volume><issue>6866</issue><spage>889</spage><epage>893</epage><pages>889-893</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control mo-lecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional protein conformation is long known
1
and has inspired the development of synthetic oligomers and polymers with the capacity to fold in a controlled manner
2
,
3
,
4
,
5
,
6
,
7
, but it remains challenging to design these so-called ‘foldamers’ so that they are capable of inducing or controlling chemical processes and interactions
8
,
9
. Here we show that the stability gained from folding can be used to control the synthesis of oligomers from short chain segments reversibly ligated through an imine metathesis reaction. That is, folding shifts the ligation equilibrium
10
,
11
,
12
,
13
in favour of conformationally ordered sequences, so that oligomers having the most stable solution structures form preferentially. Crystallization has previously been used to shift an equilibrium in order to indirectly influence the synthesis of small molecules
14
, but the present approach to selectively prepare macromolecules with stable conformations directly connects folding and synthesis, emphasizing molecular function rather than structure in polymer synthesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>11780057</pmid><doi>10.1038/414889a</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2001-12, Vol.414 (6866), p.889-893 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_72392863 |
source | MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | Applied sciences Biopolymers - chemistry Catalysis Chemistry Crystallization Deoxyribonucleic acid DNA Enzymes Exact sciences and technology Humanities and Social Sciences Imines - chemistry letter Magnetic Resonance Spectroscopy Model compounds multidisciplinary Organic polymers Physicochemistry of polymers Polymers Protein Conformation Protein Folding Proteins Proteins - chemical synthesis Proteins - chemistry Science Science (multidisciplinary) |
title | Folding-driven synthesis of oligomers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folding-driven%20synthesis%20of%20oligomers&rft.jtitle=Nature%20(London)&rft.au=Oh,%20Keunchan&rft.date=2001-12-20&rft.volume=414&rft.issue=6866&rft.spage=889&rft.epage=893&rft.pages=889-893&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/414889a&rft_dat=%3Cgale_proqu%3EA187934099%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204479110&rft_id=info:pmid/11780057&rft_galeid=A187934099&rfr_iscdi=true |