Folding-driven synthesis of oligomers

The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control mo-lecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional prot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2001-12, Vol.414 (6866), p.889-893
Hauptverfasser: Oh, Keunchan, Jeong, Kyu-Sung, Moore, Jeffrey S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 893
container_issue 6866
container_start_page 889
container_title Nature (London)
container_volume 414
creator Oh, Keunchan
Jeong, Kyu-Sung
Moore, Jeffrey S.
description The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control mo-lecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional protein conformation is long known 1 and has inspired the development of synthetic oligomers and polymers with the capacity to fold in a controlled manner 2 , 3 , 4 , 5 , 6 , 7 , but it remains challenging to design these so-called ‘foldamers’ so that they are capable of inducing or controlling chemical processes and interactions 8 , 9 . Here we show that the stability gained from folding can be used to control the synthesis of oligomers from short chain segments reversibly ligated through an imine metathesis reaction. That is, folding shifts the ligation equilibrium 10 , 11 , 12 , 13 in favour of conformationally ordered sequences, so that oligomers having the most stable solution structures form preferentially. Crystallization has previously been used to shift an equilibrium in order to indirectly influence the synthesis of small molecules 14 , but the present approach to selectively prepare macromolecules with stable conformations directly connects folding and synthesis, emphasizing molecular function rather than structure in polymer synthesis.
doi_str_mv 10.1038/414889a
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72392863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A187934099</galeid><sourcerecordid>A187934099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-a8641d7b7c34afb3af6edb0245c30b87cebb8e3101938b87e405f57eac780da23</originalsourceid><addsrcrecordid>eNqF0uFr3CAUAHApG-3tOvYfjGPQdaOk02ii-Xgca1coG2wt-yjGPDNLoldNxvrfz-MC1ysdww_y9OdTHw-hNwSfE0zFJ0aYEJU6QDPCeJmxUvAXaIZxLjIsaHmEXsV4hzEuCGeH6IgQLlLAZ-jkwneNdW3WBPsb3CI-uOEXRBsX3ix8Z1vfQ4jH6KVRXYTX0zxHtxefb1Zfsutvl1er5XWmS1wNmRIlIw2vuaZMmZoqU0JT45wVmuJacA11LYASTCoqUgwMF6bgoHR6TqNyOkfvt3nXwd-PEAfZ26ih65QDP0bJc1rloqT_hbQgJS7YBr57Au_8GFz6hMwxY7wiqX5zlG1RqzqQ1hk_BKVbcBBU5x0Ym5aXRPCKMlxVu6R7Xq_tvXyMzp9BaTTQW_1s1o97B5IZ4M_QqjFGefXj-749-7dd3vxcfd3Xp1utg48xgJHrYHsVHiTBctM_cuqfJN9O5RrrHpqdmxomgZMJqKhVZ4Jy2sadozQ5sXEfti6mLddC2NX96Z1_AVy001g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204479110</pqid></control><display><type>article</type><title>Folding-driven synthesis of oligomers</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Oh, Keunchan ; Jeong, Kyu-Sung ; Moore, Jeffrey S.</creator><creatorcontrib>Oh, Keunchan ; Jeong, Kyu-Sung ; Moore, Jeffrey S.</creatorcontrib><description>The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control mo-lecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional protein conformation is long known 1 and has inspired the development of synthetic oligomers and polymers with the capacity to fold in a controlled manner 2 , 3 , 4 , 5 , 6 , 7 , but it remains challenging to design these so-called ‘foldamers’ so that they are capable of inducing or controlling chemical processes and interactions 8 , 9 . Here we show that the stability gained from folding can be used to control the synthesis of oligomers from short chain segments reversibly ligated through an imine metathesis reaction. That is, folding shifts the ligation equilibrium 10 , 11 , 12 , 13 in favour of conformationally ordered sequences, so that oligomers having the most stable solution structures form preferentially. Crystallization has previously been used to shift an equilibrium in order to indirectly influence the synthesis of small molecules 14 , but the present approach to selectively prepare macromolecules with stable conformations directly connects folding and synthesis, emphasizing molecular function rather than structure in polymer synthesis.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/414889a</identifier><identifier>PMID: 11780057</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Applied sciences ; Biopolymers - chemistry ; Catalysis ; Chemistry ; Crystallization ; Deoxyribonucleic acid ; DNA ; Enzymes ; Exact sciences and technology ; Humanities and Social Sciences ; Imines - chemistry ; letter ; Magnetic Resonance Spectroscopy ; Model compounds ; multidisciplinary ; Organic polymers ; Physicochemistry of polymers ; Polymers ; Protein Conformation ; Protein Folding ; Proteins ; Proteins - chemical synthesis ; Proteins - chemistry ; Science ; Science (multidisciplinary)</subject><ispartof>Nature (London), 2001-12, Vol.414 (6866), p.889-893</ispartof><rights>Macmillan Magazines Ltd. 2001</rights><rights>2002 INIST-CNRS</rights><rights>COPYRIGHT 2001 Nature Publishing Group</rights><rights>Copyright Macmillan Journals Ltd. Dec 20-Dec 27, 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c609t-a8641d7b7c34afb3af6edb0245c30b87cebb8e3101938b87e405f57eac780da23</citedby><cites>FETCH-LOGICAL-c609t-a8641d7b7c34afb3af6edb0245c30b87cebb8e3101938b87e405f57eac780da23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/414889a$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/414889a$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=13380087$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11780057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oh, Keunchan</creatorcontrib><creatorcontrib>Jeong, Kyu-Sung</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><title>Folding-driven synthesis of oligomers</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control mo-lecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional protein conformation is long known 1 and has inspired the development of synthetic oligomers and polymers with the capacity to fold in a controlled manner 2 , 3 , 4 , 5 , 6 , 7 , but it remains challenging to design these so-called ‘foldamers’ so that they are capable of inducing or controlling chemical processes and interactions 8 , 9 . Here we show that the stability gained from folding can be used to control the synthesis of oligomers from short chain segments reversibly ligated through an imine metathesis reaction. That is, folding shifts the ligation equilibrium 10 , 11 , 12 , 13 in favour of conformationally ordered sequences, so that oligomers having the most stable solution structures form preferentially. Crystallization has previously been used to shift an equilibrium in order to indirectly influence the synthesis of small molecules 14 , but the present approach to selectively prepare macromolecules with stable conformations directly connects folding and synthesis, emphasizing molecular function rather than structure in polymer synthesis.</description><subject>Applied sciences</subject><subject>Biopolymers - chemistry</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Crystallization</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Exact sciences and technology</subject><subject>Humanities and Social Sciences</subject><subject>Imines - chemistry</subject><subject>letter</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Model compounds</subject><subject>multidisciplinary</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymers</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Proteins</subject><subject>Proteins - chemical synthesis</subject><subject>Proteins - chemistry</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0uFr3CAUAHApG-3tOvYfjGPQdaOk02ii-Xgca1coG2wt-yjGPDNLoldNxvrfz-MC1ysdww_y9OdTHw-hNwSfE0zFJ0aYEJU6QDPCeJmxUvAXaIZxLjIsaHmEXsV4hzEuCGeH6IgQLlLAZ-jkwneNdW3WBPsb3CI-uOEXRBsX3ix8Z1vfQ4jH6KVRXYTX0zxHtxefb1Zfsutvl1er5XWmS1wNmRIlIw2vuaZMmZoqU0JT45wVmuJacA11LYASTCoqUgwMF6bgoHR6TqNyOkfvt3nXwd-PEAfZ26ih65QDP0bJc1rloqT_hbQgJS7YBr57Au_8GFz6hMwxY7wiqX5zlG1RqzqQ1hk_BKVbcBBU5x0Ym5aXRPCKMlxVu6R7Xq_tvXyMzp9BaTTQW_1s1o97B5IZ4M_QqjFGefXj-749-7dd3vxcfd3Xp1utg48xgJHrYHsVHiTBctM_cuqfJN9O5RrrHpqdmxomgZMJqKhVZ4Jy2sadozQ5sXEfti6mLddC2NX96Z1_AVy001g</recordid><startdate>20011220</startdate><enddate>20011220</enddate><creator>Oh, Keunchan</creator><creator>Jeong, Kyu-Sung</creator><creator>Moore, Jeffrey S.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20011220</creationdate><title>Folding-driven synthesis of oligomers</title><author>Oh, Keunchan ; Jeong, Kyu-Sung ; Moore, Jeffrey S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-a8641d7b7c34afb3af6edb0245c30b87cebb8e3101938b87e405f57eac780da23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Biopolymers - chemistry</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Crystallization</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Exact sciences and technology</topic><topic>Humanities and Social Sciences</topic><topic>Imines - chemistry</topic><topic>letter</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Model compounds</topic><topic>multidisciplinary</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymers</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Proteins</topic><topic>Proteins - chemical synthesis</topic><topic>Proteins - chemistry</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oh, Keunchan</creatorcontrib><creatorcontrib>Jeong, Kyu-Sung</creatorcontrib><creatorcontrib>Moore, Jeffrey S.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oh, Keunchan</au><au>Jeong, Kyu-Sung</au><au>Moore, Jeffrey S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folding-driven synthesis of oligomers</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2001-12-20</date><risdate>2001</risdate><volume>414</volume><issue>6866</issue><spage>889</spage><epage>893</epage><pages>889-893</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>The biological function of biomacromolecules such as DNA and enzymes depends on their ability to perform and control mo-lecular association, catalysis, self-replication or other chemical processes. In the case of proteins in particular, the dependence of these functions on the three-dimensional protein conformation is long known 1 and has inspired the development of synthetic oligomers and polymers with the capacity to fold in a controlled manner 2 , 3 , 4 , 5 , 6 , 7 , but it remains challenging to design these so-called ‘foldamers’ so that they are capable of inducing or controlling chemical processes and interactions 8 , 9 . Here we show that the stability gained from folding can be used to control the synthesis of oligomers from short chain segments reversibly ligated through an imine metathesis reaction. That is, folding shifts the ligation equilibrium 10 , 11 , 12 , 13 in favour of conformationally ordered sequences, so that oligomers having the most stable solution structures form preferentially. Crystallization has previously been used to shift an equilibrium in order to indirectly influence the synthesis of small molecules 14 , but the present approach to selectively prepare macromolecules with stable conformations directly connects folding and synthesis, emphasizing molecular function rather than structure in polymer synthesis.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>11780057</pmid><doi>10.1038/414889a</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2001-12, Vol.414 (6866), p.889-893
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_72392863
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online
subjects Applied sciences
Biopolymers - chemistry
Catalysis
Chemistry
Crystallization
Deoxyribonucleic acid
DNA
Enzymes
Exact sciences and technology
Humanities and Social Sciences
Imines - chemistry
letter
Magnetic Resonance Spectroscopy
Model compounds
multidisciplinary
Organic polymers
Physicochemistry of polymers
Polymers
Protein Conformation
Protein Folding
Proteins
Proteins - chemical synthesis
Proteins - chemistry
Science
Science (multidisciplinary)
title Folding-driven synthesis of oligomers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A53%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folding-driven%20synthesis%20of%20oligomers&rft.jtitle=Nature%20(London)&rft.au=Oh,%20Keunchan&rft.date=2001-12-20&rft.volume=414&rft.issue=6866&rft.spage=889&rft.epage=893&rft.pages=889-893&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/414889a&rft_dat=%3Cgale_proqu%3EA187934099%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204479110&rft_id=info:pmid/11780057&rft_galeid=A187934099&rfr_iscdi=true