Tissue classification with generalized spectrum parameters

This paper presents performance comparisons between breast tumor classifiers based on parameters from a conventional texture analysis (CTA) and the generalized spectrum (GS). The computations of GS-based parameters from radiofrequency (RF) ultrasonic scans and their relationship to underlying scatte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasound in medicine & biology 2001-11, Vol.27 (11), p.1505-1514
Hauptverfasser: Donohue, K.D., Huang, L., Burks, T., Forsberg, F., Piccoli, C.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents performance comparisons between breast tumor classifiers based on parameters from a conventional texture analysis (CTA) and the generalized spectrum (GS). The computations of GS-based parameters from radiofrequency (RF) ultrasonic scans and their relationship to underlying scatterer properties are described. Clinical experiments demonstrate classifier performances using 22 benign and 24 malignant breast mass regions taken from 40 patients. Linear classifiers based on parameters from the front edge, back edge and interior tumor regions are examined. Results show significantly better performances for GS-based classifiers, with improvements in empirical receiver operating characteristic (ROC) areas of greater than 10%. The ROC curves show GS-based classifiers achieving a 90% sensitivity level at 50% specificity when applied to the back-edge tumor regions, an 80% sensitivity level at 65% specificity when applied to the front-edge tumor regions, and a 100% sensitivity level at 45% specificity when applied to the interior tumor regions. (E-mail: donohue@engr.ukg.edu)
ISSN:0301-5629
1879-291X
DOI:10.1016/S0301-5629(01)00468-9