Tissue classification with generalized spectrum parameters
This paper presents performance comparisons between breast tumor classifiers based on parameters from a conventional texture analysis (CTA) and the generalized spectrum (GS). The computations of GS-based parameters from radiofrequency (RF) ultrasonic scans and their relationship to underlying scatte...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 2001-11, Vol.27 (11), p.1505-1514 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents performance comparisons between breast tumor classifiers based on parameters from a conventional texture analysis (CTA) and the generalized spectrum (GS). The computations of GS-based parameters from radiofrequency (RF) ultrasonic scans and their relationship to underlying scatterer properties are described. Clinical experiments demonstrate classifier performances using 22 benign and 24 malignant breast mass regions taken from 40 patients. Linear classifiers based on parameters from the front edge, back edge and interior tumor regions are examined. Results show significantly better performances for GS-based classifiers, with improvements in empirical receiver operating characteristic (ROC) areas of greater than 10%. The ROC curves show GS-based classifiers achieving a 90% sensitivity level at 50% specificity when applied to the back-edge tumor regions, an 80% sensitivity level at 65% specificity when applied to the front-edge tumor regions, and a 100% sensitivity level at 45% specificity when applied to the interior tumor regions. (E-mail: donohue@engr.ukg.edu) |
---|---|
ISSN: | 0301-5629 1879-291X |
DOI: | 10.1016/S0301-5629(01)00468-9 |