Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode: Biosensor Signal Enhancement after Enzyme Attachment
Fluorescence microscopy was used to visualize the accumulated fluorescent product of the enzyme alkaline phosphatase to indicate where active covalently bound enzyme remained on the surface after application of a Nd:YAG laser interference pattern to a surface that was first globally derivatized with...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2000-10, Vol.72 (20), p.4914-4920 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4920 |
---|---|
container_issue | 20 |
container_start_page | 4914 |
container_title | Analytical chemistry (Washington) |
container_volume | 72 |
creator | Rosenwald, Steven E Nowall, Wilbur B Dontha, Narasaiah Kuhr, Werner G |
description | Fluorescence microscopy was used to visualize the accumulated fluorescent product of the enzyme alkaline phosphatase to indicate where active covalently bound enzyme remained on the surface after application of a Nd:YAG laser interference pattern to a surface that was first globally derivatized with the covalently bound enzyme. The electrochemical kinetics of the same carbon fiber surface were examined through the electrogenerated chemiluminescence of Ru(bpy)3 2+ to determine that electron-transfer sites were indeed segregated from the enzyme-binding sites. The enzyme-derivatized areas are determined to be separate and distinct from the areas of enhanced electron transfer. Two other enzymes, glucose oxidase and malic dehydrogenase, were then covalently bound to carbon fiber microelectrode surfaces in order to verify the change in detection limit of their respective cofactors, NADH or H2O2, under a variety of surface conditions. The S/N of an enzyme-modified electrode after laser interference pattern photoablation and electrocatalytic treatment is improved by more than 1 order of magnitude over that observed at an electrode that is globally enzyme modified. |
doi_str_mv | 10.1021/ac000442t |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72372377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>63069847</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-9cfc91591f52c4c3877fb129bf5e4f3457f1106d5307946e76f258d1c11c9b803</originalsourceid><addsrcrecordid>eNplkd1qVDEUhYModlq98AUkKBW8OJrfkxPvxqGjhVMstnobcjI7NvX81CQDVhC89TV9EjPMMAWFwE5WPhZ77Y3QE0peUcLoa-sIIUKwfA_NqGSkqpuG3UezovKKKUIO0GFK14RQSmj9EB2UKqUieoZ-tjZBxKdjhughwugAn9tcXiOed73NYRrx5LHFCxu7cl-GrvBnwcUJenA5Tit48-fXb_w2TAnGNEV8Eb6Mtscn45UtdgOMGVtfHIvy43YAPM_ZuquN_gg98LZP8HhXj9Cn5cnl4n3Vfnh3upi3lRVE5Eo77zSVmnrJnHC8Ucp3lOnOSxCeC6l8SVSvJCdKixpU7ZlsVtRR6nTXEH6EXmx9b-L0bQ0pmyEkB31vR5jWySjGN0cV8Nk_4PW0jiVNMowqTRjXokAvt1CZQUoRvLmJYbDx1lBiNgsx-4UU9unOcN0NsLojdxsowPMdYJOzvY9lZiHtuaYWdcMLVW2pkDJ83__a-NXUiitpLs8vzEfdni0-L1uzafF4y1uX7iL8395fSiitow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217902394</pqid></control><display><type>article</type><title>Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode: Biosensor Signal Enhancement after Enzyme Attachment</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Rosenwald, Steven E ; Nowall, Wilbur B ; Dontha, Narasaiah ; Kuhr, Werner G</creator><creatorcontrib>Rosenwald, Steven E ; Nowall, Wilbur B ; Dontha, Narasaiah ; Kuhr, Werner G</creatorcontrib><description>Fluorescence microscopy was used to visualize the accumulated fluorescent product of the enzyme alkaline phosphatase to indicate where active covalently bound enzyme remained on the surface after application of a Nd:YAG laser interference pattern to a surface that was first globally derivatized with the covalently bound enzyme. The electrochemical kinetics of the same carbon fiber surface were examined through the electrogenerated chemiluminescence of Ru(bpy)3 2+ to determine that electron-transfer sites were indeed segregated from the enzyme-binding sites. The enzyme-derivatized areas are determined to be separate and distinct from the areas of enhanced electron transfer. Two other enzymes, glucose oxidase and malic dehydrogenase, were then covalently bound to carbon fiber microelectrode surfaces in order to verify the change in detection limit of their respective cofactors, NADH or H2O2, under a variety of surface conditions. The S/N of an enzyme-modified electrode after laser interference pattern photoablation and electrocatalytic treatment is improved by more than 1 order of magnitude over that observed at an electrode that is globally enzyme modified.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac000442t</identifier><identifier>PMID: 11055709</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Biosensing Techniques ; Biosensors ; Biotechnology ; Carbon - chemistry ; Chemical bonds ; Enzymes ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Glucose Oxidase - chemistry ; Lasers ; Malate Dehydrogenase - chemistry ; Methods. Procedures. Technologies ; Microelectrodes ; Various methods and equipments</subject><ispartof>Analytical chemistry (Washington), 2000-10, Vol.72 (20), p.4914-4920</ispartof><rights>Copyright © 2000 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 15, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-9cfc91591f52c4c3877fb129bf5e4f3457f1106d5307946e76f258d1c11c9b803</citedby><cites>FETCH-LOGICAL-a404t-9cfc91591f52c4c3877fb129bf5e4f3457f1106d5307946e76f258d1c11c9b803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac000442t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac000442t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=864683$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11055709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenwald, Steven E</creatorcontrib><creatorcontrib>Nowall, Wilbur B</creatorcontrib><creatorcontrib>Dontha, Narasaiah</creatorcontrib><creatorcontrib>Kuhr, Werner G</creatorcontrib><title>Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode: Biosensor Signal Enhancement after Enzyme Attachment</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Fluorescence microscopy was used to visualize the accumulated fluorescent product of the enzyme alkaline phosphatase to indicate where active covalently bound enzyme remained on the surface after application of a Nd:YAG laser interference pattern to a surface that was first globally derivatized with the covalently bound enzyme. The electrochemical kinetics of the same carbon fiber surface were examined through the electrogenerated chemiluminescence of Ru(bpy)3 2+ to determine that electron-transfer sites were indeed segregated from the enzyme-binding sites. The enzyme-derivatized areas are determined to be separate and distinct from the areas of enhanced electron transfer. Two other enzymes, glucose oxidase and malic dehydrogenase, were then covalently bound to carbon fiber microelectrode surfaces in order to verify the change in detection limit of their respective cofactors, NADH or H2O2, under a variety of surface conditions. The S/N of an enzyme-modified electrode after laser interference pattern photoablation and electrocatalytic treatment is improved by more than 1 order of magnitude over that observed at an electrode that is globally enzyme modified.</description><subject>Biological and medical sciences</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Carbon - chemistry</subject><subject>Chemical bonds</subject><subject>Enzymes</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose Oxidase - chemistry</subject><subject>Lasers</subject><subject>Malate Dehydrogenase - chemistry</subject><subject>Methods. Procedures. Technologies</subject><subject>Microelectrodes</subject><subject>Various methods and equipments</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkd1qVDEUhYModlq98AUkKBW8OJrfkxPvxqGjhVMstnobcjI7NvX81CQDVhC89TV9EjPMMAWFwE5WPhZ77Y3QE0peUcLoa-sIIUKwfA_NqGSkqpuG3UezovKKKUIO0GFK14RQSmj9EB2UKqUieoZ-tjZBxKdjhughwugAn9tcXiOed73NYRrx5LHFCxu7cl-GrvBnwcUJenA5Tit48-fXb_w2TAnGNEV8Eb6Mtscn45UtdgOMGVtfHIvy43YAPM_ZuquN_gg98LZP8HhXj9Cn5cnl4n3Vfnh3upi3lRVE5Eo77zSVmnrJnHC8Ucp3lOnOSxCeC6l8SVSvJCdKixpU7ZlsVtRR6nTXEH6EXmx9b-L0bQ0pmyEkB31vR5jWySjGN0cV8Nk_4PW0jiVNMowqTRjXokAvt1CZQUoRvLmJYbDx1lBiNgsx-4UU9unOcN0NsLojdxsowPMdYJOzvY9lZiHtuaYWdcMLVW2pkDJ83__a-NXUiitpLs8vzEfdni0-L1uzafF4y1uX7iL8395fSiitow</recordid><startdate>20001015</startdate><enddate>20001015</enddate><creator>Rosenwald, Steven E</creator><creator>Nowall, Wilbur B</creator><creator>Dontha, Narasaiah</creator><creator>Kuhr, Werner G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20001015</creationdate><title>Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode: Biosensor Signal Enhancement after Enzyme Attachment</title><author>Rosenwald, Steven E ; Nowall, Wilbur B ; Dontha, Narasaiah ; Kuhr, Werner G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-9cfc91591f52c4c3877fb129bf5e4f3457f1106d5307946e76f258d1c11c9b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Biological and medical sciences</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Carbon - chemistry</topic><topic>Chemical bonds</topic><topic>Enzymes</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose Oxidase - chemistry</topic><topic>Lasers</topic><topic>Malate Dehydrogenase - chemistry</topic><topic>Methods. Procedures. Technologies</topic><topic>Microelectrodes</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenwald, Steven E</creatorcontrib><creatorcontrib>Nowall, Wilbur B</creatorcontrib><creatorcontrib>Dontha, Narasaiah</creatorcontrib><creatorcontrib>Kuhr, Werner G</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenwald, Steven E</au><au>Nowall, Wilbur B</au><au>Dontha, Narasaiah</au><au>Kuhr, Werner G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode: Biosensor Signal Enhancement after Enzyme Attachment</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2000-10-15</date><risdate>2000</risdate><volume>72</volume><issue>20</issue><spage>4914</spage><epage>4920</epage><pages>4914-4920</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Fluorescence microscopy was used to visualize the accumulated fluorescent product of the enzyme alkaline phosphatase to indicate where active covalently bound enzyme remained on the surface after application of a Nd:YAG laser interference pattern to a surface that was first globally derivatized with the covalently bound enzyme. The electrochemical kinetics of the same carbon fiber surface were examined through the electrogenerated chemiluminescence of Ru(bpy)3 2+ to determine that electron-transfer sites were indeed segregated from the enzyme-binding sites. The enzyme-derivatized areas are determined to be separate and distinct from the areas of enhanced electron transfer. Two other enzymes, glucose oxidase and malic dehydrogenase, were then covalently bound to carbon fiber microelectrode surfaces in order to verify the change in detection limit of their respective cofactors, NADH or H2O2, under a variety of surface conditions. The S/N of an enzyme-modified electrode after laser interference pattern photoablation and electrocatalytic treatment is improved by more than 1 order of magnitude over that observed at an electrode that is globally enzyme modified.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11055709</pmid><doi>10.1021/ac000442t</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2000-10, Vol.72 (20), p.4914-4920 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_72372377 |
source | MEDLINE; American Chemical Society Journals |
subjects | Biological and medical sciences Biosensing Techniques Biosensors Biotechnology Carbon - chemistry Chemical bonds Enzymes Fluorescence Fundamental and applied biological sciences. Psychology Glucose Oxidase - chemistry Lasers Malate Dehydrogenase - chemistry Methods. Procedures. Technologies Microelectrodes Various methods and equipments |
title | Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode: Biosensor Signal Enhancement after Enzyme Attachment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Interference%20Pattern%20Ablation%20of%20a%20Carbon%20Fiber%20Microelectrode:%E2%80%89%20Biosensor%20Signal%20Enhancement%20after%20Enzyme%20Attachment&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Rosenwald,%20Steven%20E&rft.date=2000-10-15&rft.volume=72&rft.issue=20&rft.spage=4914&rft.epage=4920&rft.pages=4914-4920&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac000442t&rft_dat=%3Cproquest_cross%3E63069847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217902394&rft_id=info:pmid/11055709&rfr_iscdi=true |