Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode:  Biosensor Signal Enhancement after Enzyme Attachment

Fluorescence microscopy was used to visualize the accumulated fluorescent product of the enzyme alkaline phosphatase to indicate where active covalently bound enzyme remained on the surface after application of a Nd:YAG laser interference pattern to a surface that was first globally derivatized with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2000-10, Vol.72 (20), p.4914-4920
Hauptverfasser: Rosenwald, Steven E, Nowall, Wilbur B, Dontha, Narasaiah, Kuhr, Werner G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4920
container_issue 20
container_start_page 4914
container_title Analytical chemistry (Washington)
container_volume 72
creator Rosenwald, Steven E
Nowall, Wilbur B
Dontha, Narasaiah
Kuhr, Werner G
description Fluorescence microscopy was used to visualize the accumulated fluorescent product of the enzyme alkaline phosphatase to indicate where active covalently bound enzyme remained on the surface after application of a Nd:YAG laser interference pattern to a surface that was first globally derivatized with the covalently bound enzyme. The electrochemical kinetics of the same carbon fiber surface were examined through the electrogenerated chemiluminescence of Ru(bpy)3 2+ to determine that electron-transfer sites were indeed segregated from the enzyme-binding sites. The enzyme-derivatized areas are determined to be separate and distinct from the areas of enhanced electron transfer. Two other enzymes, glucose oxidase and malic dehydrogenase, were then covalently bound to carbon fiber microelectrode surfaces in order to verify the change in detection limit of their respective cofactors, NADH or H2O2, under a variety of surface conditions. The S/N of an enzyme-modified electrode after laser interference pattern photoablation and electrocatalytic treatment is improved by more than 1 order of magnitude over that observed at an electrode that is globally enzyme modified.
doi_str_mv 10.1021/ac000442t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72372377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>63069847</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-9cfc91591f52c4c3877fb129bf5e4f3457f1106d5307946e76f258d1c11c9b803</originalsourceid><addsrcrecordid>eNplkd1qVDEUhYModlq98AUkKBW8OJrfkxPvxqGjhVMstnobcjI7NvX81CQDVhC89TV9EjPMMAWFwE5WPhZ77Y3QE0peUcLoa-sIIUKwfA_NqGSkqpuG3UezovKKKUIO0GFK14RQSmj9EB2UKqUieoZ-tjZBxKdjhughwugAn9tcXiOed73NYRrx5LHFCxu7cl-GrvBnwcUJenA5Tit48-fXb_w2TAnGNEV8Eb6Mtscn45UtdgOMGVtfHIvy43YAPM_ZuquN_gg98LZP8HhXj9Cn5cnl4n3Vfnh3upi3lRVE5Eo77zSVmnrJnHC8Ucp3lOnOSxCeC6l8SVSvJCdKixpU7ZlsVtRR6nTXEH6EXmx9b-L0bQ0pmyEkB31vR5jWySjGN0cV8Nk_4PW0jiVNMowqTRjXokAvt1CZQUoRvLmJYbDx1lBiNgsx-4UU9unOcN0NsLojdxsowPMdYJOzvY9lZiHtuaYWdcMLVW2pkDJ83__a-NXUiitpLs8vzEfdni0-L1uzafF4y1uX7iL8395fSiitow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217902394</pqid></control><display><type>article</type><title>Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode:  Biosensor Signal Enhancement after Enzyme Attachment</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Rosenwald, Steven E ; Nowall, Wilbur B ; Dontha, Narasaiah ; Kuhr, Werner G</creator><creatorcontrib>Rosenwald, Steven E ; Nowall, Wilbur B ; Dontha, Narasaiah ; Kuhr, Werner G</creatorcontrib><description>Fluorescence microscopy was used to visualize the accumulated fluorescent product of the enzyme alkaline phosphatase to indicate where active covalently bound enzyme remained on the surface after application of a Nd:YAG laser interference pattern to a surface that was first globally derivatized with the covalently bound enzyme. The electrochemical kinetics of the same carbon fiber surface were examined through the electrogenerated chemiluminescence of Ru(bpy)3 2+ to determine that electron-transfer sites were indeed segregated from the enzyme-binding sites. The enzyme-derivatized areas are determined to be separate and distinct from the areas of enhanced electron transfer. Two other enzymes, glucose oxidase and malic dehydrogenase, were then covalently bound to carbon fiber microelectrode surfaces in order to verify the change in detection limit of their respective cofactors, NADH or H2O2, under a variety of surface conditions. The S/N of an enzyme-modified electrode after laser interference pattern photoablation and electrocatalytic treatment is improved by more than 1 order of magnitude over that observed at an electrode that is globally enzyme modified.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac000442t</identifier><identifier>PMID: 11055709</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biological and medical sciences ; Biosensing Techniques ; Biosensors ; Biotechnology ; Carbon - chemistry ; Chemical bonds ; Enzymes ; Fluorescence ; Fundamental and applied biological sciences. Psychology ; Glucose Oxidase - chemistry ; Lasers ; Malate Dehydrogenase - chemistry ; Methods. Procedures. Technologies ; Microelectrodes ; Various methods and equipments</subject><ispartof>Analytical chemistry (Washington), 2000-10, Vol.72 (20), p.4914-4920</ispartof><rights>Copyright © 2000 American Chemical Society</rights><rights>2001 INIST-CNRS</rights><rights>Copyright American Chemical Society Oct 15, 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-9cfc91591f52c4c3877fb129bf5e4f3457f1106d5307946e76f258d1c11c9b803</citedby><cites>FETCH-LOGICAL-a404t-9cfc91591f52c4c3877fb129bf5e4f3457f1106d5307946e76f258d1c11c9b803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac000442t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac000442t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=864683$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11055709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosenwald, Steven E</creatorcontrib><creatorcontrib>Nowall, Wilbur B</creatorcontrib><creatorcontrib>Dontha, Narasaiah</creatorcontrib><creatorcontrib>Kuhr, Werner G</creatorcontrib><title>Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode:  Biosensor Signal Enhancement after Enzyme Attachment</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Fluorescence microscopy was used to visualize the accumulated fluorescent product of the enzyme alkaline phosphatase to indicate where active covalently bound enzyme remained on the surface after application of a Nd:YAG laser interference pattern to a surface that was first globally derivatized with the covalently bound enzyme. The electrochemical kinetics of the same carbon fiber surface were examined through the electrogenerated chemiluminescence of Ru(bpy)3 2+ to determine that electron-transfer sites were indeed segregated from the enzyme-binding sites. The enzyme-derivatized areas are determined to be separate and distinct from the areas of enhanced electron transfer. Two other enzymes, glucose oxidase and malic dehydrogenase, were then covalently bound to carbon fiber microelectrode surfaces in order to verify the change in detection limit of their respective cofactors, NADH or H2O2, under a variety of surface conditions. The S/N of an enzyme-modified electrode after laser interference pattern photoablation and electrocatalytic treatment is improved by more than 1 order of magnitude over that observed at an electrode that is globally enzyme modified.</description><subject>Biological and medical sciences</subject><subject>Biosensing Techniques</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Carbon - chemistry</subject><subject>Chemical bonds</subject><subject>Enzymes</subject><subject>Fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glucose Oxidase - chemistry</subject><subject>Lasers</subject><subject>Malate Dehydrogenase - chemistry</subject><subject>Methods. Procedures. Technologies</subject><subject>Microelectrodes</subject><subject>Various methods and equipments</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkd1qVDEUhYModlq98AUkKBW8OJrfkxPvxqGjhVMstnobcjI7NvX81CQDVhC89TV9EjPMMAWFwE5WPhZ77Y3QE0peUcLoa-sIIUKwfA_NqGSkqpuG3UezovKKKUIO0GFK14RQSmj9EB2UKqUieoZ-tjZBxKdjhughwugAn9tcXiOed73NYRrx5LHFCxu7cl-GrvBnwcUJenA5Tit48-fXb_w2TAnGNEV8Eb6Mtscn45UtdgOMGVtfHIvy43YAPM_ZuquN_gg98LZP8HhXj9Cn5cnl4n3Vfnh3upi3lRVE5Eo77zSVmnrJnHC8Ucp3lOnOSxCeC6l8SVSvJCdKixpU7ZlsVtRR6nTXEH6EXmx9b-L0bQ0pmyEkB31vR5jWySjGN0cV8Nk_4PW0jiVNMowqTRjXokAvt1CZQUoRvLmJYbDx1lBiNgsx-4UU9unOcN0NsLojdxsowPMdYJOzvY9lZiHtuaYWdcMLVW2pkDJ83__a-NXUiitpLs8vzEfdni0-L1uzafF4y1uX7iL8395fSiitow</recordid><startdate>20001015</startdate><enddate>20001015</enddate><creator>Rosenwald, Steven E</creator><creator>Nowall, Wilbur B</creator><creator>Dontha, Narasaiah</creator><creator>Kuhr, Werner G</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20001015</creationdate><title>Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode:  Biosensor Signal Enhancement after Enzyme Attachment</title><author>Rosenwald, Steven E ; Nowall, Wilbur B ; Dontha, Narasaiah ; Kuhr, Werner G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-9cfc91591f52c4c3877fb129bf5e4f3457f1106d5307946e76f258d1c11c9b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Biological and medical sciences</topic><topic>Biosensing Techniques</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Carbon - chemistry</topic><topic>Chemical bonds</topic><topic>Enzymes</topic><topic>Fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glucose Oxidase - chemistry</topic><topic>Lasers</topic><topic>Malate Dehydrogenase - chemistry</topic><topic>Methods. Procedures. Technologies</topic><topic>Microelectrodes</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosenwald, Steven E</creatorcontrib><creatorcontrib>Nowall, Wilbur B</creatorcontrib><creatorcontrib>Dontha, Narasaiah</creatorcontrib><creatorcontrib>Kuhr, Werner G</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosenwald, Steven E</au><au>Nowall, Wilbur B</au><au>Dontha, Narasaiah</au><au>Kuhr, Werner G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode:  Biosensor Signal Enhancement after Enzyme Attachment</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2000-10-15</date><risdate>2000</risdate><volume>72</volume><issue>20</issue><spage>4914</spage><epage>4920</epage><pages>4914-4920</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>Fluorescence microscopy was used to visualize the accumulated fluorescent product of the enzyme alkaline phosphatase to indicate where active covalently bound enzyme remained on the surface after application of a Nd:YAG laser interference pattern to a surface that was first globally derivatized with the covalently bound enzyme. The electrochemical kinetics of the same carbon fiber surface were examined through the electrogenerated chemiluminescence of Ru(bpy)3 2+ to determine that electron-transfer sites were indeed segregated from the enzyme-binding sites. The enzyme-derivatized areas are determined to be separate and distinct from the areas of enhanced electron transfer. Two other enzymes, glucose oxidase and malic dehydrogenase, were then covalently bound to carbon fiber microelectrode surfaces in order to verify the change in detection limit of their respective cofactors, NADH or H2O2, under a variety of surface conditions. The S/N of an enzyme-modified electrode after laser interference pattern photoablation and electrocatalytic treatment is improved by more than 1 order of magnitude over that observed at an electrode that is globally enzyme modified.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>11055709</pmid><doi>10.1021/ac000442t</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2000-10, Vol.72 (20), p.4914-4920
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_72372377
source MEDLINE; American Chemical Society Journals
subjects Biological and medical sciences
Biosensing Techniques
Biosensors
Biotechnology
Carbon - chemistry
Chemical bonds
Enzymes
Fluorescence
Fundamental and applied biological sciences. Psychology
Glucose Oxidase - chemistry
Lasers
Malate Dehydrogenase - chemistry
Methods. Procedures. Technologies
Microelectrodes
Various methods and equipments
title Laser Interference Pattern Ablation of a Carbon Fiber Microelectrode:  Biosensor Signal Enhancement after Enzyme Attachment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A02%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Interference%20Pattern%20Ablation%20of%20a%20Carbon%20Fiber%20Microelectrode:%E2%80%89%20Biosensor%20Signal%20Enhancement%20after%20Enzyme%20Attachment&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Rosenwald,%20Steven%20E&rft.date=2000-10-15&rft.volume=72&rft.issue=20&rft.spage=4914&rft.epage=4920&rft.pages=4914-4920&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac000442t&rft_dat=%3Cproquest_cross%3E63069847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217902394&rft_id=info:pmid/11055709&rfr_iscdi=true