Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity

Trabecular bone has been reported as having two‐dimensional (2‐D) fractal characteristics at the histological level, a finding correlated with biomechanical properties. However, several fractal dimensions (D) are known and computational ways to obtain them vary considerably. This study compared thre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of pathology 2001-11, Vol.195 (4), p.515-521
Hauptverfasser: Chappard, Daniel, Legrand, Erick, Haettich, Bénédicte, Chalès, Gérard, Auvinet, Bernard, Eschard, Jean-Paul, Hamelin, Jean-Pierre, Baslé, Michel-Félix, Audran, Maurice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue 4
container_start_page 515
container_title The Journal of pathology
container_volume 195
creator Chappard, Daniel
Legrand, Erick
Haettich, Bénédicte
Chalès, Gérard
Auvinet, Bernard
Eschard, Jean-Paul
Hamelin, Jean-Pierre
Baslé, Michel-Félix
Audran, Maurice
description Trabecular bone has been reported as having two‐dimensional (2‐D) fractal characteristics at the histological level, a finding correlated with biomechanical properties. However, several fractal dimensions (D) are known and computational ways to obtain them vary considerably. This study compared three algorithms on the same series of bone biopsies, to obtain the Kolmogorov, Minkowski–Bouligand, and mass‐radius fractal dimensions. The relationships with histomorphometric descriptors of the 2‐D trabecular architecture were investigated. Bone biopsies were obtained from 148 osteoporotic male patients. Bone volume (BV/TV), trabecular characteristics (Tb.N, Tb.Sp, Tb.Th), strut analysis, star volumes (marrow spaces and trabeculae), inter‐connectivity index, and Euler–Poincaré number were computed. The box‐counting method was used to obtain the Kolmogorov dimension (Dk), the dilatation method for the Minkowski–Bouligand dimension (DMB), and the sandbox for the mass‐radius dimension (DMR) and lacunarity (L). Logarithmic relationships were observed between BV/TV and the fractal dimensions. The best correlation was obtained with DMR and the lowest with DMB. Lacunarity was correlated with descriptors of the marrow cavities (ICI, star volume, Tb.Sp). Linear relationships were observed among the three fractal techniques which appeared highly correlated. A cluster analysis of all histomorphometric parameters provided a tree with three groups of descriptors: for trabeculae (Tb.Th, strut); for marrow cavities (Euler, ICI, Tb.Sp, star volume, L); and for the complexity of the network (Tb.N and the three D's). A sole fractal dimension cannot be used instead of the classic 2‐D descriptors of architecture; D rather reflects the complexity of branching trabeculae. Computation time is also an important determinant when choosing one of these methods. Copyright © 2001 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/path.970
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72363233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72363233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3850-a4e02fce86afb5f937abadb277c4c4de4325787e08eb1272522c36360a02dffc3</originalsourceid><addsrcrecordid>eNp10c1u1DAUBWALgei0IPEEyBsQmxT_xHHCrhrRFqkqLAaxtBznmhiSONiO2nkVnrYeJmpXrCzLn--xfBB6Q8k5JYR9nHXqzxtJnqENJU1VNHVTPUebfMQKXlJ5gk5j_EUIaRohXqITSmUpqlps0N_LoE3SA-7cCFN0fsLe4hR0C2YZdMCtn-ATNn6cdXBxPe4DAO5dTH70Ye79CCk4808tCTqcwPST-7NAxNYHPIKOS3DTz3wTsA6md1mkJeTcdOeLx-y8P8wY4N6l_Sv0wuohwut1PUPfLz_vttfFzderL9uLm8LwWpBCl0CYNVBX2rbCNlzqVnctk9KUpuyg5EzIWgKpoaVMMsGY4RWviCass9bwM_T-OHcO_vDkpEYXDQyDnsAvUUmWOeM8ww9HaIKPMYBVc3CjDntFiTr0oA49qNxDpm_XmUs7QvcE14_P4N0KdDR6sEFPxsUnV1JSN6TJrji6OzfA_r-B6tvF7voYvPpcDtw_eh1-q0pyKdSP2ytViS2t5a1QO_4AK2WzWw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72363233</pqid></control><display><type>article</type><title>Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chappard, Daniel ; Legrand, Erick ; Haettich, Bénédicte ; Chalès, Gérard ; Auvinet, Bernard ; Eschard, Jean-Paul ; Hamelin, Jean-Pierre ; Baslé, Michel-Félix ; Audran, Maurice</creator><creatorcontrib>Chappard, Daniel ; Legrand, Erick ; Haettich, Bénédicte ; Chalès, Gérard ; Auvinet, Bernard ; Eschard, Jean-Paul ; Hamelin, Jean-Pierre ; Baslé, Michel-Félix ; Audran, Maurice</creatorcontrib><description>Trabecular bone has been reported as having two‐dimensional (2‐D) fractal characteristics at the histological level, a finding correlated with biomechanical properties. However, several fractal dimensions (D) are known and computational ways to obtain them vary considerably. This study compared three algorithms on the same series of bone biopsies, to obtain the Kolmogorov, Minkowski–Bouligand, and mass‐radius fractal dimensions. The relationships with histomorphometric descriptors of the 2‐D trabecular architecture were investigated. Bone biopsies were obtained from 148 osteoporotic male patients. Bone volume (BV/TV), trabecular characteristics (Tb.N, Tb.Sp, Tb.Th), strut analysis, star volumes (marrow spaces and trabeculae), inter‐connectivity index, and Euler–Poincaré number were computed. The box‐counting method was used to obtain the Kolmogorov dimension (Dk), the dilatation method for the Minkowski–Bouligand dimension (DMB), and the sandbox for the mass‐radius dimension (DMR) and lacunarity (L). Logarithmic relationships were observed between BV/TV and the fractal dimensions. The best correlation was obtained with DMR and the lowest with DMB. Lacunarity was correlated with descriptors of the marrow cavities (ICI, star volume, Tb.Sp). Linear relationships were observed among the three fractal techniques which appeared highly correlated. A cluster analysis of all histomorphometric parameters provided a tree with three groups of descriptors: for trabeculae (Tb.Th, strut); for marrow cavities (Euler, ICI, Tb.Sp, star volume, L); and for the complexity of the network (Tb.N and the three D's). A sole fractal dimension cannot be used instead of the classic 2‐D descriptors of architecture; D rather reflects the complexity of branching trabeculae. Computation time is also an important determinant when choosing one of these methods. Copyright © 2001 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0022-3417</identifier><identifier>EISSN: 1096-9896</identifier><identifier>DOI: 10.1002/path.970</identifier><identifier>PMID: 11745685</identifier><identifier>CODEN: JPTLAS</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Biological and medical sciences ; bone architecture ; bone histomorphometry ; bone structure ; Cluster Analysis ; fractal dimension ; fractal geometry ; Fractals ; Humans ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; Least-Squares Analysis ; Linear Models ; Male ; male osteoporosis ; Medical sciences ; Middle Aged ; Miscellaneous. Technology ; Osteoporosis - pathology ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><ispartof>The Journal of pathology, 2001-11, Vol.195 (4), p.515-521</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Ltd.</rights><rights>2002 INIST-CNRS</rights><rights>Copyright 2001 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3850-a4e02fce86afb5f937abadb277c4c4de4325787e08eb1272522c36360a02dffc3</citedby><cites>FETCH-LOGICAL-c3850-a4e02fce86afb5f937abadb277c4c4de4325787e08eb1272522c36360a02dffc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpath.970$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpath.970$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14108909$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11745685$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chappard, Daniel</creatorcontrib><creatorcontrib>Legrand, Erick</creatorcontrib><creatorcontrib>Haettich, Bénédicte</creatorcontrib><creatorcontrib>Chalès, Gérard</creatorcontrib><creatorcontrib>Auvinet, Bernard</creatorcontrib><creatorcontrib>Eschard, Jean-Paul</creatorcontrib><creatorcontrib>Hamelin, Jean-Pierre</creatorcontrib><creatorcontrib>Baslé, Michel-Félix</creatorcontrib><creatorcontrib>Audran, Maurice</creatorcontrib><title>Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity</title><title>The Journal of pathology</title><addtitle>J. Pathol</addtitle><description>Trabecular bone has been reported as having two‐dimensional (2‐D) fractal characteristics at the histological level, a finding correlated with biomechanical properties. However, several fractal dimensions (D) are known and computational ways to obtain them vary considerably. This study compared three algorithms on the same series of bone biopsies, to obtain the Kolmogorov, Minkowski–Bouligand, and mass‐radius fractal dimensions. The relationships with histomorphometric descriptors of the 2‐D trabecular architecture were investigated. Bone biopsies were obtained from 148 osteoporotic male patients. Bone volume (BV/TV), trabecular characteristics (Tb.N, Tb.Sp, Tb.Th), strut analysis, star volumes (marrow spaces and trabeculae), inter‐connectivity index, and Euler–Poincaré number were computed. The box‐counting method was used to obtain the Kolmogorov dimension (Dk), the dilatation method for the Minkowski–Bouligand dimension (DMB), and the sandbox for the mass‐radius dimension (DMR) and lacunarity (L). Logarithmic relationships were observed between BV/TV and the fractal dimensions. The best correlation was obtained with DMR and the lowest with DMB. Lacunarity was correlated with descriptors of the marrow cavities (ICI, star volume, Tb.Sp). Linear relationships were observed among the three fractal techniques which appeared highly correlated. A cluster analysis of all histomorphometric parameters provided a tree with three groups of descriptors: for trabeculae (Tb.Th, strut); for marrow cavities (Euler, ICI, Tb.Sp, star volume, L); and for the complexity of the network (Tb.N and the three D's). A sole fractal dimension cannot be used instead of the classic 2‐D descriptors of architecture; D rather reflects the complexity of branching trabeculae. Computation time is also an important determinant when choosing one of these methods. Copyright © 2001 John Wiley &amp; Sons, Ltd.</description><subject>Biological and medical sciences</subject><subject>bone architecture</subject><subject>bone histomorphometry</subject><subject>bone structure</subject><subject>Cluster Analysis</subject><subject>fractal dimension</subject><subject>fractal geometry</subject><subject>Fractals</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Least-Squares Analysis</subject><subject>Linear Models</subject><subject>Male</subject><subject>male osteoporosis</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Miscellaneous. Technology</subject><subject>Osteoporosis - pathology</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><issn>0022-3417</issn><issn>1096-9896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp10c1u1DAUBWALgei0IPEEyBsQmxT_xHHCrhrRFqkqLAaxtBznmhiSONiO2nkVnrYeJmpXrCzLn--xfBB6Q8k5JYR9nHXqzxtJnqENJU1VNHVTPUebfMQKXlJ5gk5j_EUIaRohXqITSmUpqlps0N_LoE3SA-7cCFN0fsLe4hR0C2YZdMCtn-ATNn6cdXBxPe4DAO5dTH70Ye79CCk4808tCTqcwPST-7NAxNYHPIKOS3DTz3wTsA6md1mkJeTcdOeLx-y8P8wY4N6l_Sv0wuohwut1PUPfLz_vttfFzderL9uLm8LwWpBCl0CYNVBX2rbCNlzqVnctk9KUpuyg5EzIWgKpoaVMMsGY4RWviCass9bwM_T-OHcO_vDkpEYXDQyDnsAvUUmWOeM8ww9HaIKPMYBVc3CjDntFiTr0oA49qNxDpm_XmUs7QvcE14_P4N0KdDR6sEFPxsUnV1JSN6TJrji6OzfA_r-B6tvF7voYvPpcDtw_eh1-q0pyKdSP2ytViS2t5a1QO_4AK2WzWw</recordid><startdate>200111</startdate><enddate>200111</enddate><creator>Chappard, Daniel</creator><creator>Legrand, Erick</creator><creator>Haettich, Bénédicte</creator><creator>Chalès, Gérard</creator><creator>Auvinet, Bernard</creator><creator>Eschard, Jean-Paul</creator><creator>Hamelin, Jean-Pierre</creator><creator>Baslé, Michel-Félix</creator><creator>Audran, Maurice</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200111</creationdate><title>Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity</title><author>Chappard, Daniel ; Legrand, Erick ; Haettich, Bénédicte ; Chalès, Gérard ; Auvinet, Bernard ; Eschard, Jean-Paul ; Hamelin, Jean-Pierre ; Baslé, Michel-Félix ; Audran, Maurice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3850-a4e02fce86afb5f937abadb277c4c4de4325787e08eb1272522c36360a02dffc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Biological and medical sciences</topic><topic>bone architecture</topic><topic>bone histomorphometry</topic><topic>bone structure</topic><topic>Cluster Analysis</topic><topic>fractal dimension</topic><topic>fractal geometry</topic><topic>Fractals</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Least-Squares Analysis</topic><topic>Linear Models</topic><topic>Male</topic><topic>male osteoporosis</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Miscellaneous. Technology</topic><topic>Osteoporosis - pathology</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chappard, Daniel</creatorcontrib><creatorcontrib>Legrand, Erick</creatorcontrib><creatorcontrib>Haettich, Bénédicte</creatorcontrib><creatorcontrib>Chalès, Gérard</creatorcontrib><creatorcontrib>Auvinet, Bernard</creatorcontrib><creatorcontrib>Eschard, Jean-Paul</creatorcontrib><creatorcontrib>Hamelin, Jean-Pierre</creatorcontrib><creatorcontrib>Baslé, Michel-Félix</creatorcontrib><creatorcontrib>Audran, Maurice</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of pathology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chappard, Daniel</au><au>Legrand, Erick</au><au>Haettich, Bénédicte</au><au>Chalès, Gérard</au><au>Auvinet, Bernard</au><au>Eschard, Jean-Paul</au><au>Hamelin, Jean-Pierre</au><au>Baslé, Michel-Félix</au><au>Audran, Maurice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity</atitle><jtitle>The Journal of pathology</jtitle><addtitle>J. Pathol</addtitle><date>2001-11</date><risdate>2001</risdate><volume>195</volume><issue>4</issue><spage>515</spage><epage>521</epage><pages>515-521</pages><issn>0022-3417</issn><eissn>1096-9896</eissn><coden>JPTLAS</coden><abstract>Trabecular bone has been reported as having two‐dimensional (2‐D) fractal characteristics at the histological level, a finding correlated with biomechanical properties. However, several fractal dimensions (D) are known and computational ways to obtain them vary considerably. This study compared three algorithms on the same series of bone biopsies, to obtain the Kolmogorov, Minkowski–Bouligand, and mass‐radius fractal dimensions. The relationships with histomorphometric descriptors of the 2‐D trabecular architecture were investigated. Bone biopsies were obtained from 148 osteoporotic male patients. Bone volume (BV/TV), trabecular characteristics (Tb.N, Tb.Sp, Tb.Th), strut analysis, star volumes (marrow spaces and trabeculae), inter‐connectivity index, and Euler–Poincaré number were computed. The box‐counting method was used to obtain the Kolmogorov dimension (Dk), the dilatation method for the Minkowski–Bouligand dimension (DMB), and the sandbox for the mass‐radius dimension (DMR) and lacunarity (L). Logarithmic relationships were observed between BV/TV and the fractal dimensions. The best correlation was obtained with DMR and the lowest with DMB. Lacunarity was correlated with descriptors of the marrow cavities (ICI, star volume, Tb.Sp). Linear relationships were observed among the three fractal techniques which appeared highly correlated. A cluster analysis of all histomorphometric parameters provided a tree with three groups of descriptors: for trabeculae (Tb.Th, strut); for marrow cavities (Euler, ICI, Tb.Sp, star volume, L); and for the complexity of the network (Tb.N and the three D's). A sole fractal dimension cannot be used instead of the classic 2‐D descriptors of architecture; D rather reflects the complexity of branching trabeculae. Computation time is also an important determinant when choosing one of these methods. Copyright © 2001 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>11745685</pmid><doi>10.1002/path.970</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3417
ispartof The Journal of pathology, 2001-11, Vol.195 (4), p.515-521
issn 0022-3417
1096-9896
language eng
recordid cdi_proquest_miscellaneous_72363233
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biological and medical sciences
bone architecture
bone histomorphometry
bone structure
Cluster Analysis
fractal dimension
fractal geometry
Fractals
Humans
Image Processing, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
Least-Squares Analysis
Linear Models
Male
male osteoporosis
Medical sciences
Middle Aged
Miscellaneous. Technology
Osteoporosis - pathology
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
title Fractal dimension of trabecular bone: comparison of three histomorphometric computed techniques for measuring the architectural two-dimensional complexity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T23%3A24%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractal%20dimension%20of%20trabecular%20bone:%20comparison%20of%20three%20histomorphometric%20computed%20techniques%20for%20measuring%20the%20architectural%20two-dimensional%20complexity&rft.jtitle=The%20Journal%20of%20pathology&rft.au=Chappard,%20Daniel&rft.date=2001-11&rft.volume=195&rft.issue=4&rft.spage=515&rft.epage=521&rft.pages=515-521&rft.issn=0022-3417&rft.eissn=1096-9896&rft.coden=JPTLAS&rft_id=info:doi/10.1002/path.970&rft_dat=%3Cproquest_cross%3E72363233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72363233&rft_id=info:pmid/11745685&rfr_iscdi=true