Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea
Diketide N‐acetylcysteamine (diketide NAC) thioester precursors were fed to 6‐Deoxyerythronolide B synthase (DEBS) ketosynthase‐1 inactivated (KS1°) Saccharopolyspora erythraea strains to produce 13‐substituted erythromycin analogs. This direct feeding process potentially represents a simplified pro...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2001-12, Vol.76 (4), p.303-310 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 310 |
---|---|
container_issue | 4 |
container_start_page | 303 |
container_title | Biotechnology and bioengineering |
container_volume | 76 |
creator | Frykman, Scott Leaf, Timothy Carreras, Chris Licari, Peter |
description | Diketide N‐acetylcysteamine (diketide NAC) thioester precursors were fed to 6‐Deoxyerythronolide B synthase (DEBS) ketosynthase‐1 inactivated (KS1°) Saccharopolyspora erythraea strains to produce 13‐substituted erythromycin analogs. This direct feeding process potentially represents a simplified production process over the current analog production system. Titers of these analogs were observed to increase linearly with the diketide concentration up to a precursor‐specific saturation level. However, the rate of product formation was lower and the rate of diketide consumption higher with S. erythraea than was previously observed with a recombinant strain of Streptomyces coelicolor. Several strategies were pursued to address the issue of these high diketide consumption rates: (1) elucidation of the locale of diketide degradation, (2) addition of β‐oxidation inhibitors to the cultures, and (3) addition of a sacrificial diketide enantiomer to occupy putative degradative enzymes. Additionally, repeated addition of diketide to an S. erythraea KS1° culture indicated that the titer of these erythromycin analogs is also currently limited by a shorter production period than observed during erythromycin synthesis by the parent strain. These results indicate potential avenues for expanding the use of this precursor‐directed system from the generation of limited quantities of erythromycin analogs to a large‐scale production system for these compounds. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng. 76: 303–310, 2001. |
doi_str_mv | 10.1002/bit.10086 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72353378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72353378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4576-dc5c075af588fcd71d36423b7fe3616375fee0027287302ebe173db7371814703</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi3UChbaA3-gyqWVOATsOPZ4jy0qX0J0pW7Vo-U4E3CbjRc7Ucm_x8uGckKcZkZ65h37IeSQ0WNGaXFSuX7TKLlDZozOIafFnL4jM0qpzLmYF3tkP8Y_aQQl5S7ZYwxKwQTMyHIR0A4h-pDXLrU91tk6-HqwvfNd5psMw9jfBb8aresy05nW38asGrOfxto7E_zat2Nc-2Am0qD5QN43po34caoH5NfZ9-XpRX794_zy9Ot1bksBMq-tsBSEaYRSja2B1VyWBa-gQS6Z5CAaxPQ_KBRwWmCFDHhdAQemWAmUH5Av29z04vsBY69XLlpsW9OhH6KGggvOQb0JMsWFLBVL4NEWtMHHGLDR6-BWJoyaUb1xrZNr_eQ6sZ-m0KFaYf1CTnIT8HkCTLSmbYLprIsvXMkEL4tN0MmW--daHF-_qL9dLp9P59sNF3t8-L9hwl8tkx6hf9-c6wWcXfGbK9AL_giOEaSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18356481</pqid></control><display><type>article</type><title>Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Frykman, Scott ; Leaf, Timothy ; Carreras, Chris ; Licari, Peter</creator><creatorcontrib>Frykman, Scott ; Leaf, Timothy ; Carreras, Chris ; Licari, Peter</creatorcontrib><description>Diketide N‐acetylcysteamine (diketide NAC) thioester precursors were fed to 6‐Deoxyerythronolide B synthase (DEBS) ketosynthase‐1 inactivated (KS1°) Saccharopolyspora erythraea strains to produce 13‐substituted erythromycin analogs. This direct feeding process potentially represents a simplified production process over the current analog production system. Titers of these analogs were observed to increase linearly with the diketide concentration up to a precursor‐specific saturation level. However, the rate of product formation was lower and the rate of diketide consumption higher with S. erythraea than was previously observed with a recombinant strain of Streptomyces coelicolor. Several strategies were pursued to address the issue of these high diketide consumption rates: (1) elucidation of the locale of diketide degradation, (2) addition of β‐oxidation inhibitors to the cultures, and (3) addition of a sacrificial diketide enantiomer to occupy putative degradative enzymes. Additionally, repeated addition of diketide to an S. erythraea KS1° culture indicated that the titer of these erythromycin analogs is also currently limited by a shorter production period than observed during erythromycin synthesis by the parent strain. These results indicate potential avenues for expanding the use of this precursor‐directed system from the generation of limited quantities of erythromycin analogs to a large‐scale production system for these compounds. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng. 76: 303–310, 2001.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.10086</identifier><identifier>PMID: 11745157</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>6-Deoxyerythronolide B synthase ; Anti-Bacterial Agents - biosynthesis ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Biological and medical sciences ; Biotechnology ; Cell Division ; chemobiosynthesis ; diketide ; Dose-Response Relationship, Drug ; erythraea ; erythromycin ; Erythromycin - analogs & derivatives ; Erythromycin - biosynthesis ; Erythromycin - pharmacology ; Esters - chemistry ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; Industrial applications and implications. Economical aspects ; Kinetics ; Models, Chemical ; N-Acetylcysteamine thioester ; Oxygen - metabolism ; polyketide ; Production of active biomolecules ; Protein Binding ; Saccharopolyspora - metabolism ; Saccharopolyspora erythraea ; Streptomyces - chemistry ; thioester ; Time Factors</subject><ispartof>Biotechnology and bioengineering, 2001-12, Vol.76 (4), p.303-310</ispartof><rights>Copyright © 2001 John Wiley & Sons, Inc.</rights><rights>2002 INIST-CNRS</rights><rights>Copyright 2001 John Wiley & Sons, Inc. Biotechnol Bioeng. 76: 303-310, 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4576-dc5c075af588fcd71d36423b7fe3616375fee0027287302ebe173db7371814703</citedby><cites>FETCH-LOGICAL-c4576-dc5c075af588fcd71d36423b7fe3616375fee0027287302ebe173db7371814703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.10086$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.10086$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14153426$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11745157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frykman, Scott</creatorcontrib><creatorcontrib>Leaf, Timothy</creatorcontrib><creatorcontrib>Carreras, Chris</creatorcontrib><creatorcontrib>Licari, Peter</creatorcontrib><title>Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Diketide N‐acetylcysteamine (diketide NAC) thioester precursors were fed to 6‐Deoxyerythronolide B synthase (DEBS) ketosynthase‐1 inactivated (KS1°) Saccharopolyspora erythraea strains to produce 13‐substituted erythromycin analogs. This direct feeding process potentially represents a simplified production process over the current analog production system. Titers of these analogs were observed to increase linearly with the diketide concentration up to a precursor‐specific saturation level. However, the rate of product formation was lower and the rate of diketide consumption higher with S. erythraea than was previously observed with a recombinant strain of Streptomyces coelicolor. Several strategies were pursued to address the issue of these high diketide consumption rates: (1) elucidation of the locale of diketide degradation, (2) addition of β‐oxidation inhibitors to the cultures, and (3) addition of a sacrificial diketide enantiomer to occupy putative degradative enzymes. Additionally, repeated addition of diketide to an S. erythraea KS1° culture indicated that the titer of these erythromycin analogs is also currently limited by a shorter production period than observed during erythromycin synthesis by the parent strain. These results indicate potential avenues for expanding the use of this precursor‐directed system from the generation of limited quantities of erythromycin analogs to a large‐scale production system for these compounds. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng. 76: 303–310, 2001.</description><subject>6-Deoxyerythronolide B synthase</subject><subject>Anti-Bacterial Agents - biosynthesis</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Division</subject><subject>chemobiosynthesis</subject><subject>diketide</subject><subject>Dose-Response Relationship, Drug</subject><subject>erythraea</subject><subject>erythromycin</subject><subject>Erythromycin - analogs & derivatives</subject><subject>Erythromycin - biosynthesis</subject><subject>Erythromycin - pharmacology</subject><subject>Esters - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>N-Acetylcysteamine thioester</subject><subject>Oxygen - metabolism</subject><subject>polyketide</subject><subject>Production of active biomolecules</subject><subject>Protein Binding</subject><subject>Saccharopolyspora - metabolism</subject><subject>Saccharopolyspora erythraea</subject><subject>Streptomyces - chemistry</subject><subject>thioester</subject><subject>Time Factors</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhi3UChbaA3-gyqWVOATsOPZ4jy0qX0J0pW7Vo-U4E3CbjRc7Ucm_x8uGckKcZkZ65h37IeSQ0WNGaXFSuX7TKLlDZozOIafFnL4jM0qpzLmYF3tkP8Y_aQQl5S7ZYwxKwQTMyHIR0A4h-pDXLrU91tk6-HqwvfNd5psMw9jfBb8aresy05nW38asGrOfxto7E_zat2Nc-2Am0qD5QN43po34caoH5NfZ9-XpRX794_zy9Ot1bksBMq-tsBSEaYRSja2B1VyWBa-gQS6Z5CAaxPQ_KBRwWmCFDHhdAQemWAmUH5Av29z04vsBY69XLlpsW9OhH6KGggvOQb0JMsWFLBVL4NEWtMHHGLDR6-BWJoyaUb1xrZNr_eQ6sZ-m0KFaYf1CTnIT8HkCTLSmbYLprIsvXMkEL4tN0MmW--daHF-_qL9dLp9P59sNF3t8-L9hwl8tkx6hf9-c6wWcXfGbK9AL_giOEaSw</recordid><startdate>200112</startdate><enddate>200112</enddate><creator>Frykman, Scott</creator><creator>Leaf, Timothy</creator><creator>Carreras, Chris</creator><creator>Licari, Peter</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200112</creationdate><title>Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea</title><author>Frykman, Scott ; Leaf, Timothy ; Carreras, Chris ; Licari, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4576-dc5c075af588fcd71d36423b7fe3616375fee0027287302ebe173db7371814703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>6-Deoxyerythronolide B synthase</topic><topic>Anti-Bacterial Agents - biosynthesis</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Division</topic><topic>chemobiosynthesis</topic><topic>diketide</topic><topic>Dose-Response Relationship, Drug</topic><topic>erythraea</topic><topic>erythromycin</topic><topic>Erythromycin - analogs & derivatives</topic><topic>Erythromycin - biosynthesis</topic><topic>Erythromycin - pharmacology</topic><topic>Esters - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>N-Acetylcysteamine thioester</topic><topic>Oxygen - metabolism</topic><topic>polyketide</topic><topic>Production of active biomolecules</topic><topic>Protein Binding</topic><topic>Saccharopolyspora - metabolism</topic><topic>Saccharopolyspora erythraea</topic><topic>Streptomyces - chemistry</topic><topic>thioester</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frykman, Scott</creatorcontrib><creatorcontrib>Leaf, Timothy</creatorcontrib><creatorcontrib>Carreras, Chris</creatorcontrib><creatorcontrib>Licari, Peter</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frykman, Scott</au><au>Leaf, Timothy</au><au>Carreras, Chris</au><au>Licari, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2001-12</date><risdate>2001</risdate><volume>76</volume><issue>4</issue><spage>303</spage><epage>310</epage><pages>303-310</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Diketide N‐acetylcysteamine (diketide NAC) thioester precursors were fed to 6‐Deoxyerythronolide B synthase (DEBS) ketosynthase‐1 inactivated (KS1°) Saccharopolyspora erythraea strains to produce 13‐substituted erythromycin analogs. This direct feeding process potentially represents a simplified production process over the current analog production system. Titers of these analogs were observed to increase linearly with the diketide concentration up to a precursor‐specific saturation level. However, the rate of product formation was lower and the rate of diketide consumption higher with S. erythraea than was previously observed with a recombinant strain of Streptomyces coelicolor. Several strategies were pursued to address the issue of these high diketide consumption rates: (1) elucidation of the locale of diketide degradation, (2) addition of β‐oxidation inhibitors to the cultures, and (3) addition of a sacrificial diketide enantiomer to occupy putative degradative enzymes. Additionally, repeated addition of diketide to an S. erythraea KS1° culture indicated that the titer of these erythromycin analogs is also currently limited by a shorter production period than observed during erythromycin synthesis by the parent strain. These results indicate potential avenues for expanding the use of this precursor‐directed system from the generation of limited quantities of erythromycin analogs to a large‐scale production system for these compounds. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng. 76: 303–310, 2001.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>11745157</pmid><doi>10.1002/bit.10086</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2001-12, Vol.76 (4), p.303-310 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_72353378 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 6-Deoxyerythronolide B synthase Anti-Bacterial Agents - biosynthesis Anti-Bacterial Agents - pharmacology Antibiotics Biological and medical sciences Biotechnology Cell Division chemobiosynthesis diketide Dose-Response Relationship, Drug erythraea erythromycin Erythromycin - analogs & derivatives Erythromycin - biosynthesis Erythromycin - pharmacology Esters - chemistry Fundamental and applied biological sciences. Psychology Health. Pharmaceutical industry Industrial applications and implications. Economical aspects Kinetics Models, Chemical N-Acetylcysteamine thioester Oxygen - metabolism polyketide Production of active biomolecules Protein Binding Saccharopolyspora - metabolism Saccharopolyspora erythraea Streptomyces - chemistry thioester Time Factors |
title | Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precursor-directed%20production%20of%20erythromycin%20analogs%20by%20Saccharopolyspora%20erythraea&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Frykman,%20Scott&rft.date=2001-12&rft.volume=76&rft.issue=4&rft.spage=303&rft.epage=310&rft.pages=303-310&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.10086&rft_dat=%3Cproquest_cross%3E72353378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18356481&rft_id=info:pmid/11745157&rfr_iscdi=true |