Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea

Diketide N‐acetylcysteamine (diketide NAC) thioester precursors were fed to 6‐Deoxyerythronolide B synthase (DEBS) ketosynthase‐1 inactivated (KS1°) Saccharopolyspora erythraea strains to produce 13‐substituted erythromycin analogs. This direct feeding process potentially represents a simplified pro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2001-12, Vol.76 (4), p.303-310
Hauptverfasser: Frykman, Scott, Leaf, Timothy, Carreras, Chris, Licari, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 310
container_issue 4
container_start_page 303
container_title Biotechnology and bioengineering
container_volume 76
creator Frykman, Scott
Leaf, Timothy
Carreras, Chris
Licari, Peter
description Diketide N‐acetylcysteamine (diketide NAC) thioester precursors were fed to 6‐Deoxyerythronolide B synthase (DEBS) ketosynthase‐1 inactivated (KS1°) Saccharopolyspora erythraea strains to produce 13‐substituted erythromycin analogs. This direct feeding process potentially represents a simplified production process over the current analog production system. Titers of these analogs were observed to increase linearly with the diketide concentration up to a precursor‐specific saturation level. However, the rate of product formation was lower and the rate of diketide consumption higher with S. erythraea than was previously observed with a recombinant strain of Streptomyces coelicolor. Several strategies were pursued to address the issue of these high diketide consumption rates: (1) elucidation of the locale of diketide degradation, (2) addition of β‐oxidation inhibitors to the cultures, and (3) addition of a sacrificial diketide enantiomer to occupy putative degradative enzymes. Additionally, repeated addition of diketide to an S. erythraea KS1° culture indicated that the titer of these erythromycin analogs is also currently limited by a shorter production period than observed during erythromycin synthesis by the parent strain. These results indicate potential avenues for expanding the use of this precursor‐directed system from the generation of limited quantities of erythromycin analogs to a large‐scale production system for these compounds. © 2001 John Wiley & Sons, Inc. Biotechnol Bioeng. 76: 303–310, 2001.
doi_str_mv 10.1002/bit.10086
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72353378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72353378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4576-dc5c075af588fcd71d36423b7fe3616375fee0027287302ebe173db7371814703</originalsourceid><addsrcrecordid>eNqFkE1P3DAQhi3UChbaA3-gyqWVOATsOPZ4jy0qX0J0pW7Vo-U4E3CbjRc7Ucm_x8uGckKcZkZ65h37IeSQ0WNGaXFSuX7TKLlDZozOIafFnL4jM0qpzLmYF3tkP8Y_aQQl5S7ZYwxKwQTMyHIR0A4h-pDXLrU91tk6-HqwvfNd5psMw9jfBb8aresy05nW38asGrOfxto7E_zat2Nc-2Am0qD5QN43po34caoH5NfZ9-XpRX794_zy9Ot1bksBMq-tsBSEaYRSja2B1VyWBa-gQS6Z5CAaxPQ_KBRwWmCFDHhdAQemWAmUH5Av29z04vsBY69XLlpsW9OhH6KGggvOQb0JMsWFLBVL4NEWtMHHGLDR6-BWJoyaUb1xrZNr_eQ6sZ-m0KFaYf1CTnIT8HkCTLSmbYLprIsvXMkEL4tN0MmW--daHF-_qL9dLp9P59sNF3t8-L9hwl8tkx6hf9-c6wWcXfGbK9AL_giOEaSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18356481</pqid></control><display><type>article</type><title>Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Frykman, Scott ; Leaf, Timothy ; Carreras, Chris ; Licari, Peter</creator><creatorcontrib>Frykman, Scott ; Leaf, Timothy ; Carreras, Chris ; Licari, Peter</creatorcontrib><description>Diketide N‐acetylcysteamine (diketide NAC) thioester precursors were fed to 6‐Deoxyerythronolide B synthase (DEBS) ketosynthase‐1 inactivated (KS1°) Saccharopolyspora erythraea strains to produce 13‐substituted erythromycin analogs. This direct feeding process potentially represents a simplified production process over the current analog production system. Titers of these analogs were observed to increase linearly with the diketide concentration up to a precursor‐specific saturation level. However, the rate of product formation was lower and the rate of diketide consumption higher with S. erythraea than was previously observed with a recombinant strain of Streptomyces coelicolor. Several strategies were pursued to address the issue of these high diketide consumption rates: (1) elucidation of the locale of diketide degradation, (2) addition of β‐oxidation inhibitors to the cultures, and (3) addition of a sacrificial diketide enantiomer to occupy putative degradative enzymes. Additionally, repeated addition of diketide to an S. erythraea KS1° culture indicated that the titer of these erythromycin analogs is also currently limited by a shorter production period than observed during erythromycin synthesis by the parent strain. These results indicate potential avenues for expanding the use of this precursor‐directed system from the generation of limited quantities of erythromycin analogs to a large‐scale production system for these compounds. © 2001 John Wiley &amp; Sons, Inc. Biotechnol Bioeng. 76: 303–310, 2001.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.10086</identifier><identifier>PMID: 11745157</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>6-Deoxyerythronolide B synthase ; Anti-Bacterial Agents - biosynthesis ; Anti-Bacterial Agents - pharmacology ; Antibiotics ; Biological and medical sciences ; Biotechnology ; Cell Division ; chemobiosynthesis ; diketide ; Dose-Response Relationship, Drug ; erythraea ; erythromycin ; Erythromycin - analogs &amp; derivatives ; Erythromycin - biosynthesis ; Erythromycin - pharmacology ; Esters - chemistry ; Fundamental and applied biological sciences. Psychology ; Health. Pharmaceutical industry ; Industrial applications and implications. Economical aspects ; Kinetics ; Models, Chemical ; N-Acetylcysteamine thioester ; Oxygen - metabolism ; polyketide ; Production of active biomolecules ; Protein Binding ; Saccharopolyspora - metabolism ; Saccharopolyspora erythraea ; Streptomyces - chemistry ; thioester ; Time Factors</subject><ispartof>Biotechnology and bioengineering, 2001-12, Vol.76 (4), p.303-310</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Inc.</rights><rights>2002 INIST-CNRS</rights><rights>Copyright 2001 John Wiley &amp; Sons, Inc. Biotechnol Bioeng. 76: 303-310, 2001.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4576-dc5c075af588fcd71d36423b7fe3616375fee0027287302ebe173db7371814703</citedby><cites>FETCH-LOGICAL-c4576-dc5c075af588fcd71d36423b7fe3616375fee0027287302ebe173db7371814703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.10086$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.10086$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14153426$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11745157$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frykman, Scott</creatorcontrib><creatorcontrib>Leaf, Timothy</creatorcontrib><creatorcontrib>Carreras, Chris</creatorcontrib><creatorcontrib>Licari, Peter</creatorcontrib><title>Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Diketide N‐acetylcysteamine (diketide NAC) thioester precursors were fed to 6‐Deoxyerythronolide B synthase (DEBS) ketosynthase‐1 inactivated (KS1°) Saccharopolyspora erythraea strains to produce 13‐substituted erythromycin analogs. This direct feeding process potentially represents a simplified production process over the current analog production system. Titers of these analogs were observed to increase linearly with the diketide concentration up to a precursor‐specific saturation level. However, the rate of product formation was lower and the rate of diketide consumption higher with S. erythraea than was previously observed with a recombinant strain of Streptomyces coelicolor. Several strategies were pursued to address the issue of these high diketide consumption rates: (1) elucidation of the locale of diketide degradation, (2) addition of β‐oxidation inhibitors to the cultures, and (3) addition of a sacrificial diketide enantiomer to occupy putative degradative enzymes. Additionally, repeated addition of diketide to an S. erythraea KS1° culture indicated that the titer of these erythromycin analogs is also currently limited by a shorter production period than observed during erythromycin synthesis by the parent strain. These results indicate potential avenues for expanding the use of this precursor‐directed system from the generation of limited quantities of erythromycin analogs to a large‐scale production system for these compounds. © 2001 John Wiley &amp; Sons, Inc. Biotechnol Bioeng. 76: 303–310, 2001.</description><subject>6-Deoxyerythronolide B synthase</subject><subject>Anti-Bacterial Agents - biosynthesis</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotics</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Cell Division</subject><subject>chemobiosynthesis</subject><subject>diketide</subject><subject>Dose-Response Relationship, Drug</subject><subject>erythraea</subject><subject>erythromycin</subject><subject>Erythromycin - analogs &amp; derivatives</subject><subject>Erythromycin - biosynthesis</subject><subject>Erythromycin - pharmacology</subject><subject>Esters - chemistry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Health. Pharmaceutical industry</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Kinetics</subject><subject>Models, Chemical</subject><subject>N-Acetylcysteamine thioester</subject><subject>Oxygen - metabolism</subject><subject>polyketide</subject><subject>Production of active biomolecules</subject><subject>Protein Binding</subject><subject>Saccharopolyspora - metabolism</subject><subject>Saccharopolyspora erythraea</subject><subject>Streptomyces - chemistry</subject><subject>thioester</subject><subject>Time Factors</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1P3DAQhi3UChbaA3-gyqWVOATsOPZ4jy0qX0J0pW7Vo-U4E3CbjRc7Ucm_x8uGckKcZkZ65h37IeSQ0WNGaXFSuX7TKLlDZozOIafFnL4jM0qpzLmYF3tkP8Y_aQQl5S7ZYwxKwQTMyHIR0A4h-pDXLrU91tk6-HqwvfNd5psMw9jfBb8aresy05nW38asGrOfxto7E_zat2Nc-2Am0qD5QN43po34caoH5NfZ9-XpRX794_zy9Ot1bksBMq-tsBSEaYRSja2B1VyWBa-gQS6Z5CAaxPQ_KBRwWmCFDHhdAQemWAmUH5Av29z04vsBY69XLlpsW9OhH6KGggvOQb0JMsWFLBVL4NEWtMHHGLDR6-BWJoyaUb1xrZNr_eQ6sZ-m0KFaYf1CTnIT8HkCTLSmbYLprIsvXMkEL4tN0MmW--daHF-_qL9dLp9P59sNF3t8-L9hwl8tkx6hf9-c6wWcXfGbK9AL_giOEaSw</recordid><startdate>200112</startdate><enddate>200112</enddate><creator>Frykman, Scott</creator><creator>Leaf, Timothy</creator><creator>Carreras, Chris</creator><creator>Licari, Peter</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>200112</creationdate><title>Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea</title><author>Frykman, Scott ; Leaf, Timothy ; Carreras, Chris ; Licari, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4576-dc5c075af588fcd71d36423b7fe3616375fee0027287302ebe173db7371814703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>6-Deoxyerythronolide B synthase</topic><topic>Anti-Bacterial Agents - biosynthesis</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotics</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Cell Division</topic><topic>chemobiosynthesis</topic><topic>diketide</topic><topic>Dose-Response Relationship, Drug</topic><topic>erythraea</topic><topic>erythromycin</topic><topic>Erythromycin - analogs &amp; derivatives</topic><topic>Erythromycin - biosynthesis</topic><topic>Erythromycin - pharmacology</topic><topic>Esters - chemistry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Health. Pharmaceutical industry</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Kinetics</topic><topic>Models, Chemical</topic><topic>N-Acetylcysteamine thioester</topic><topic>Oxygen - metabolism</topic><topic>polyketide</topic><topic>Production of active biomolecules</topic><topic>Protein Binding</topic><topic>Saccharopolyspora - metabolism</topic><topic>Saccharopolyspora erythraea</topic><topic>Streptomyces - chemistry</topic><topic>thioester</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frykman, Scott</creatorcontrib><creatorcontrib>Leaf, Timothy</creatorcontrib><creatorcontrib>Carreras, Chris</creatorcontrib><creatorcontrib>Licari, Peter</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frykman, Scott</au><au>Leaf, Timothy</au><au>Carreras, Chris</au><au>Licari, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2001-12</date><risdate>2001</risdate><volume>76</volume><issue>4</issue><spage>303</spage><epage>310</epage><pages>303-310</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Diketide N‐acetylcysteamine (diketide NAC) thioester precursors were fed to 6‐Deoxyerythronolide B synthase (DEBS) ketosynthase‐1 inactivated (KS1°) Saccharopolyspora erythraea strains to produce 13‐substituted erythromycin analogs. This direct feeding process potentially represents a simplified production process over the current analog production system. Titers of these analogs were observed to increase linearly with the diketide concentration up to a precursor‐specific saturation level. However, the rate of product formation was lower and the rate of diketide consumption higher with S. erythraea than was previously observed with a recombinant strain of Streptomyces coelicolor. Several strategies were pursued to address the issue of these high diketide consumption rates: (1) elucidation of the locale of diketide degradation, (2) addition of β‐oxidation inhibitors to the cultures, and (3) addition of a sacrificial diketide enantiomer to occupy putative degradative enzymes. Additionally, repeated addition of diketide to an S. erythraea KS1° culture indicated that the titer of these erythromycin analogs is also currently limited by a shorter production period than observed during erythromycin synthesis by the parent strain. These results indicate potential avenues for expanding the use of this precursor‐directed system from the generation of limited quantities of erythromycin analogs to a large‐scale production system for these compounds. © 2001 John Wiley &amp; Sons, Inc. Biotechnol Bioeng. 76: 303–310, 2001.</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>11745157</pmid><doi>10.1002/bit.10086</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2001-12, Vol.76 (4), p.303-310
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_72353378
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 6-Deoxyerythronolide B synthase
Anti-Bacterial Agents - biosynthesis
Anti-Bacterial Agents - pharmacology
Antibiotics
Biological and medical sciences
Biotechnology
Cell Division
chemobiosynthesis
diketide
Dose-Response Relationship, Drug
erythraea
erythromycin
Erythromycin - analogs & derivatives
Erythromycin - biosynthesis
Erythromycin - pharmacology
Esters - chemistry
Fundamental and applied biological sciences. Psychology
Health. Pharmaceutical industry
Industrial applications and implications. Economical aspects
Kinetics
Models, Chemical
N-Acetylcysteamine thioester
Oxygen - metabolism
polyketide
Production of active biomolecules
Protein Binding
Saccharopolyspora - metabolism
Saccharopolyspora erythraea
Streptomyces - chemistry
thioester
Time Factors
title Precursor-directed production of erythromycin analogs by Saccharopolyspora erythraea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A02%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precursor-directed%20production%20of%20erythromycin%20analogs%20by%20Saccharopolyspora%20erythraea&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Frykman,%20Scott&rft.date=2001-12&rft.volume=76&rft.issue=4&rft.spage=303&rft.epage=310&rft.pages=303-310&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.10086&rft_dat=%3Cproquest_cross%3E72353378%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18356481&rft_id=info:pmid/11745157&rfr_iscdi=true