Unconditionally stable algorithms to solve the time-dependent Maxwell equations

Based on the Suzuki product-formula approach, we construct a family of unconditionally stable algorithms to solve the time-dependent Maxwell equations. We describe a practical implementation of these algorithms for one-, two-, and three-dimensional systems with spatially varying permittivity and per...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-12, Vol.64 (6 Pt 2), p.066705-066705, Article 066705
Hauptverfasser: Kole, J S, Figge, M T, De Raedt, H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 066705
container_issue 6 Pt 2
container_start_page 066705
container_title Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
container_volume 64
creator Kole, J S
Figge, M T
De Raedt, H
description Based on the Suzuki product-formula approach, we construct a family of unconditionally stable algorithms to solve the time-dependent Maxwell equations. We describe a practical implementation of these algorithms for one-, two-, and three-dimensional systems with spatially varying permittivity and permeability. The salient features of the algorithms are illustrated by computing selected eigenmodes and the full density of states of one-, two-, and three-dimensional models and by simulating the propagation of light in slabs of photonic band-gap materials.
doi_str_mv 10.1103/PhysRevE.64.066705
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72348248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72348248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-c002bec631ffd136c70e0c14d83b454975b633a2287903990b5789f09203eeef3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EolB4AQ4oJ24pa28Sx0dUlR-pqAjRs-UkGxrkJG3sFPr2pGoRh9XOYWY0-hi74TDhHPD-bbVz77SdTZJoAkkiIT5hFxxUHKJM5emgY1SDjuMRu3TuCwAFptE5G3EuMUHOL9hi2eRtU1S-ahtj7S5w3mSWAmM_267yq9oFvg1ca7cU-NVwVU1hQWtqCmp88Gp-vsnagDa92Ve4K3ZWGuvo-vjHbPk4-5g-h_PF08v0YR7mmCgf5gAio3zYUJYFxySXQJDzqEgxi-JIyThLEI0QqVSASkEWy1SVoAQgEZU4ZneH3nXXbnpyXteVy4cppqG2d1oKjFIRpYNRHIx51zrXUanXXVWbbqc56D1G_YdRJ5E-YBxCt8f2Pqup-I8cueEvSRhwWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72348248</pqid></control><display><type>article</type><title>Unconditionally stable algorithms to solve the time-dependent Maxwell equations</title><source>American Physical Society Journals</source><creator>Kole, J S ; Figge, M T ; De Raedt, H</creator><creatorcontrib>Kole, J S ; Figge, M T ; De Raedt, H</creatorcontrib><description>Based on the Suzuki product-formula approach, we construct a family of unconditionally stable algorithms to solve the time-dependent Maxwell equations. We describe a practical implementation of these algorithms for one-, two-, and three-dimensional systems with spatially varying permittivity and permeability. The salient features of the algorithms are illustrated by computing selected eigenmodes and the full density of states of one-, two-, and three-dimensional models and by simulating the propagation of light in slabs of photonic band-gap materials.</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.64.066705</identifier><identifier>PMID: 11736311</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-12, Vol.64 (6 Pt 2), p.066705-066705, Article 066705</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-c002bec631ffd136c70e0c14d83b454975b633a2287903990b5789f09203eeef3</citedby><cites>FETCH-LOGICAL-c369t-c002bec631ffd136c70e0c14d83b454975b633a2287903990b5789f09203eeef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11736311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kole, J S</creatorcontrib><creatorcontrib>Figge, M T</creatorcontrib><creatorcontrib>De Raedt, H</creatorcontrib><title>Unconditionally stable algorithms to solve the time-dependent Maxwell equations</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>Based on the Suzuki product-formula approach, we construct a family of unconditionally stable algorithms to solve the time-dependent Maxwell equations. We describe a practical implementation of these algorithms for one-, two-, and three-dimensional systems with spatially varying permittivity and permeability. The salient features of the algorithms are illustrated by computing selected eigenmodes and the full density of states of one-, two-, and three-dimensional models and by simulating the propagation of light in slabs of photonic band-gap materials.</description><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkM1OwzAQhC0EolB4AQ4oJ24pa28Sx0dUlR-pqAjRs-UkGxrkJG3sFPr2pGoRh9XOYWY0-hi74TDhHPD-bbVz77SdTZJoAkkiIT5hFxxUHKJM5emgY1SDjuMRu3TuCwAFptE5G3EuMUHOL9hi2eRtU1S-ahtj7S5w3mSWAmM_267yq9oFvg1ca7cU-NVwVU1hQWtqCmp88Gp-vsnagDa92Ve4K3ZWGuvo-vjHbPk4-5g-h_PF08v0YR7mmCgf5gAio3zYUJYFxySXQJDzqEgxi-JIyThLEI0QqVSASkEWy1SVoAQgEZU4ZneH3nXXbnpyXteVy4cppqG2d1oKjFIRpYNRHIx51zrXUanXXVWbbqc56D1G_YdRJ5E-YBxCt8f2Pqup-I8cueEvSRhwWQ</recordid><startdate>20011201</startdate><enddate>20011201</enddate><creator>Kole, J S</creator><creator>Figge, M T</creator><creator>De Raedt, H</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011201</creationdate><title>Unconditionally stable algorithms to solve the time-dependent Maxwell equations</title><author>Kole, J S ; Figge, M T ; De Raedt, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-c002bec631ffd136c70e0c14d83b454975b633a2287903990b5789f09203eeef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Kole, J S</creatorcontrib><creatorcontrib>Figge, M T</creatorcontrib><creatorcontrib>De Raedt, H</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kole, J S</au><au>Figge, M T</au><au>De Raedt, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unconditionally stable algorithms to solve the time-dependent Maxwell equations</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2001-12-01</date><risdate>2001</risdate><volume>64</volume><issue>6 Pt 2</issue><spage>066705</spage><epage>066705</epage><pages>066705-066705</pages><artnum>066705</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>Based on the Suzuki product-formula approach, we construct a family of unconditionally stable algorithms to solve the time-dependent Maxwell equations. We describe a practical implementation of these algorithms for one-, two-, and three-dimensional systems with spatially varying permittivity and permeability. The salient features of the algorithms are illustrated by computing selected eigenmodes and the full density of states of one-, two-, and three-dimensional models and by simulating the propagation of light in slabs of photonic band-gap materials.</abstract><cop>United States</cop><pmid>11736311</pmid><doi>10.1103/PhysRevE.64.066705</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-12, Vol.64 (6 Pt 2), p.066705-066705, Article 066705
issn 1539-3755
1063-651X
1095-3787
language eng
recordid cdi_proquest_miscellaneous_72348248
source American Physical Society Journals
title Unconditionally stable algorithms to solve the time-dependent Maxwell equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unconditionally%20stable%20algorithms%20to%20solve%20the%20time-dependent%20Maxwell%20equations&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Kole,%20J%20S&rft.date=2001-12-01&rft.volume=64&rft.issue=6%20Pt%202&rft.spage=066705&rft.epage=066705&rft.pages=066705-066705&rft.artnum=066705&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.64.066705&rft_dat=%3Cproquest_cross%3E72348248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72348248&rft_id=info:pmid/11736311&rfr_iscdi=true