Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals
In the field of epilepsy, the analysis of stereoelectroencephalographic (SEEG, intra-cerebral recording) signals with signal processing methods can help to better identify the epileptogenic zone, the area of the brain responsible for triggering seizures, and to better understand its organization. In...
Gespeichert in:
Veröffentlicht in: | Biological cybernetics 2000-10, Vol.83 (4), p.367-378 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 378 |
---|---|
container_issue | 4 |
container_start_page | 367 |
container_title | Biological cybernetics |
container_volume | 83 |
creator | Wendling, F Bellanger, J J Bartolomei, F Chauvel, P |
description | In the field of epilepsy, the analysis of stereoelectroencephalographic (SEEG, intra-cerebral recording) signals with signal processing methods can help to better identify the epileptogenic zone, the area of the brain responsible for triggering seizures, and to better understand its organization. In order to evaluate these methods and to physiologically interpret the results they provide, we developed a model able to produce EEG signals from "organized" networks of neural populations. Starting from a neurophysiologically relevant model initially proposed by Lopes Da Silva et al. [Lopes da Silva FH, Hoek A, Smith H, Zetterberg LH (1974) Kybernetic 15: 27-37] and recently re-designed by Jansen et al. [Jansen BH, Zouridakis G, Brandt ME (1993) Biol Cybern 68: 275 283] the present study demonstrates that this model can be extended to generate spontaneous EEG signals from multiple coupled neural populations. Model parameters related to excitation, inhibition and coupling are then altered to produce epileptiform EEG signals. Results show that the qualitative behavior of the model is realistic; simulated signals resemble those recorded from different brain structures for both interictal and ictal activities. Possible exploitation of simulations in signal processing is illustrated through one example; statistical couplings between both simulated signals and real SEEG signals are estimated using nonlinear regression. Results are compared and show that, through the model, real SEEG signals can be interpreted with the aid of signal processing methods. |
doi_str_mv | 10.1007/s004220000160 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72344976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72344976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-941791916b82f67062587a13a6d407818a596b6bab5498a0969363399b36bed13</originalsourceid><addsrcrecordid>eNp90U1LxDAQBuAgiq4fR68SEMRLdSbJJs1RlnUVFgTRo5S0ndVKv0xaYf-9WVwQPZjLEOaZgeRl7BThCgHMdQBQQkA8qGGHTVBJkYAxsMsmIBUkGJsH7DCE92ismNp9doAI0hrACXt5pJo-XVsQ71a87dq6asl5Xo9NT2XSO-8aGsjzpiupDrxq-fBG3LWuXocqbIZK6oe3ZD5fcOqrOl6qgofqNYpwzPZWsdDJth6x59v50-wuWT4s7mc3y6RQqIfEKjQWLeo8FSttQItpahxKp0sFJsXUTa3Ode7yqbKpA6ut1FJam0udU4nyiF187-199zFSGLKmCgXVtWupG0NmhFTKGh3h5b8QIRUCRfymSM__0Pdu9JtXRSXQyAghquRbFb4LwdMq633VOL-OKNsElP0KKPqz7dYxb6j80dtE5BdEgYfE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1021732210</pqid></control><display><type>article</type><title>Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Wendling, F ; Bellanger, J J ; Bartolomei, F ; Chauvel, P</creator><creatorcontrib>Wendling, F ; Bellanger, J J ; Bartolomei, F ; Chauvel, P</creatorcontrib><description>In the field of epilepsy, the analysis of stereoelectroencephalographic (SEEG, intra-cerebral recording) signals with signal processing methods can help to better identify the epileptogenic zone, the area of the brain responsible for triggering seizures, and to better understand its organization. In order to evaluate these methods and to physiologically interpret the results they provide, we developed a model able to produce EEG signals from "organized" networks of neural populations. Starting from a neurophysiologically relevant model initially proposed by Lopes Da Silva et al. [Lopes da Silva FH, Hoek A, Smith H, Zetterberg LH (1974) Kybernetic 15: 27-37] and recently re-designed by Jansen et al. [Jansen BH, Zouridakis G, Brandt ME (1993) Biol Cybern 68: 275 283] the present study demonstrates that this model can be extended to generate spontaneous EEG signals from multiple coupled neural populations. Model parameters related to excitation, inhibition and coupling are then altered to produce epileptiform EEG signals. Results show that the qualitative behavior of the model is realistic; simulated signals resemble those recorded from different brain structures for both interictal and ictal activities. Possible exploitation of simulations in signal processing is illustrated through one example; statistical couplings between both simulated signals and real SEEG signals are estimated using nonlinear regression. Results are compared and show that, through the model, real SEEG signals can be interpreted with the aid of signal processing methods.</description><identifier>ISSN: 0340-1200</identifier><identifier>EISSN: 1432-0770</identifier><identifier>DOI: 10.1007/s004220000160</identifier><identifier>PMID: 11039701</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Cybernetics ; Electroencephalography ; Epilepsy ; Epilepsy - physiopathology ; Hippocampus - cytology ; Hippocampus - physiopathology ; Humans ; Models, Neurological ; Neocortex - cytology ; Neocortex - physiopathology ; Neural Inhibition - physiology ; Neural networks ; Neurons - physiology ; Nonlinear Dynamics ; Seizures - physiopathology ; Signal processing</subject><ispartof>Biological cybernetics, 2000-10, Vol.83 (4), p.367-378</ispartof><rights>Springer-Verlag Berlin Heidelberg 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-941791916b82f67062587a13a6d407818a596b6bab5498a0969363399b36bed13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11039701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wendling, F</creatorcontrib><creatorcontrib>Bellanger, J J</creatorcontrib><creatorcontrib>Bartolomei, F</creatorcontrib><creatorcontrib>Chauvel, P</creatorcontrib><title>Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals</title><title>Biological cybernetics</title><addtitle>Biol Cybern</addtitle><description>In the field of epilepsy, the analysis of stereoelectroencephalographic (SEEG, intra-cerebral recording) signals with signal processing methods can help to better identify the epileptogenic zone, the area of the brain responsible for triggering seizures, and to better understand its organization. In order to evaluate these methods and to physiologically interpret the results they provide, we developed a model able to produce EEG signals from "organized" networks of neural populations. Starting from a neurophysiologically relevant model initially proposed by Lopes Da Silva et al. [Lopes da Silva FH, Hoek A, Smith H, Zetterberg LH (1974) Kybernetic 15: 27-37] and recently re-designed by Jansen et al. [Jansen BH, Zouridakis G, Brandt ME (1993) Biol Cybern 68: 275 283] the present study demonstrates that this model can be extended to generate spontaneous EEG signals from multiple coupled neural populations. Model parameters related to excitation, inhibition and coupling are then altered to produce epileptiform EEG signals. Results show that the qualitative behavior of the model is realistic; simulated signals resemble those recorded from different brain structures for both interictal and ictal activities. Possible exploitation of simulations in signal processing is illustrated through one example; statistical couplings between both simulated signals and real SEEG signals are estimated using nonlinear regression. Results are compared and show that, through the model, real SEEG signals can be interpreted with the aid of signal processing methods.</description><subject>Cybernetics</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Epilepsy - physiopathology</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiopathology</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Neocortex - cytology</subject><subject>Neocortex - physiopathology</subject><subject>Neural Inhibition - physiology</subject><subject>Neural networks</subject><subject>Neurons - physiology</subject><subject>Nonlinear Dynamics</subject><subject>Seizures - physiopathology</subject><subject>Signal processing</subject><issn>0340-1200</issn><issn>1432-0770</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90U1LxDAQBuAgiq4fR68SEMRLdSbJJs1RlnUVFgTRo5S0ndVKv0xaYf-9WVwQPZjLEOaZgeRl7BThCgHMdQBQQkA8qGGHTVBJkYAxsMsmIBUkGJsH7DCE92ismNp9doAI0hrACXt5pJo-XVsQ71a87dq6asl5Xo9NT2XSO-8aGsjzpiupDrxq-fBG3LWuXocqbIZK6oe3ZD5fcOqrOl6qgofqNYpwzPZWsdDJth6x59v50-wuWT4s7mc3y6RQqIfEKjQWLeo8FSttQItpahxKp0sFJsXUTa3Ode7yqbKpA6ut1FJam0udU4nyiF187-199zFSGLKmCgXVtWupG0NmhFTKGh3h5b8QIRUCRfymSM__0Pdu9JtXRSXQyAghquRbFb4LwdMq633VOL-OKNsElP0KKPqz7dYxb6j80dtE5BdEgYfE</recordid><startdate>20001001</startdate><enddate>20001001</enddate><creator>Wendling, F</creator><creator>Bellanger, J J</creator><creator>Bartolomei, F</creator><creator>Chauvel, P</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20001001</creationdate><title>Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals</title><author>Wendling, F ; Bellanger, J J ; Bartolomei, F ; Chauvel, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-941791916b82f67062587a13a6d407818a596b6bab5498a0969363399b36bed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Cybernetics</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Epilepsy - physiopathology</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiopathology</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Neocortex - cytology</topic><topic>Neocortex - physiopathology</topic><topic>Neural Inhibition - physiology</topic><topic>Neural networks</topic><topic>Neurons - physiology</topic><topic>Nonlinear Dynamics</topic><topic>Seizures - physiopathology</topic><topic>Signal processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wendling, F</creatorcontrib><creatorcontrib>Bellanger, J J</creatorcontrib><creatorcontrib>Bartolomei, F</creatorcontrib><creatorcontrib>Chauvel, P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Biological cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wendling, F</au><au>Bellanger, J J</au><au>Bartolomei, F</au><au>Chauvel, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals</atitle><jtitle>Biological cybernetics</jtitle><addtitle>Biol Cybern</addtitle><date>2000-10-01</date><risdate>2000</risdate><volume>83</volume><issue>4</issue><spage>367</spage><epage>378</epage><pages>367-378</pages><issn>0340-1200</issn><eissn>1432-0770</eissn><abstract>In the field of epilepsy, the analysis of stereoelectroencephalographic (SEEG, intra-cerebral recording) signals with signal processing methods can help to better identify the epileptogenic zone, the area of the brain responsible for triggering seizures, and to better understand its organization. In order to evaluate these methods and to physiologically interpret the results they provide, we developed a model able to produce EEG signals from "organized" networks of neural populations. Starting from a neurophysiologically relevant model initially proposed by Lopes Da Silva et al. [Lopes da Silva FH, Hoek A, Smith H, Zetterberg LH (1974) Kybernetic 15: 27-37] and recently re-designed by Jansen et al. [Jansen BH, Zouridakis G, Brandt ME (1993) Biol Cybern 68: 275 283] the present study demonstrates that this model can be extended to generate spontaneous EEG signals from multiple coupled neural populations. Model parameters related to excitation, inhibition and coupling are then altered to produce epileptiform EEG signals. Results show that the qualitative behavior of the model is realistic; simulated signals resemble those recorded from different brain structures for both interictal and ictal activities. Possible exploitation of simulations in signal processing is illustrated through one example; statistical couplings between both simulated signals and real SEEG signals are estimated using nonlinear regression. Results are compared and show that, through the model, real SEEG signals can be interpreted with the aid of signal processing methods.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>11039701</pmid><doi>10.1007/s004220000160</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0340-1200 |
ispartof | Biological cybernetics, 2000-10, Vol.83 (4), p.367-378 |
issn | 0340-1200 1432-0770 |
language | eng |
recordid | cdi_proquest_miscellaneous_72344976 |
source | MEDLINE; Springer Nature - Complete Springer Journals |
subjects | Cybernetics Electroencephalography Epilepsy Epilepsy - physiopathology Hippocampus - cytology Hippocampus - physiopathology Humans Models, Neurological Neocortex - cytology Neocortex - physiopathology Neural Inhibition - physiology Neural networks Neurons - physiology Nonlinear Dynamics Seizures - physiopathology Signal processing |
title | Relevance of nonlinear lumped-parameter models in the analysis of depth-EEG epileptic signals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A03%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relevance%20of%20nonlinear%20lumped-parameter%20models%20in%20the%20analysis%20of%20depth-EEG%20epileptic%20signals&rft.jtitle=Biological%20cybernetics&rft.au=Wendling,%20F&rft.date=2000-10-01&rft.volume=83&rft.issue=4&rft.spage=367&rft.epage=378&rft.pages=367-378&rft.issn=0340-1200&rft.eissn=1432-0770&rft_id=info:doi/10.1007/s004220000160&rft_dat=%3Cproquest_cross%3E72344976%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1021732210&rft_id=info:pmid/11039701&rfr_iscdi=true |