Conductivity of continuum percolating systems
We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese model, where the conducting medium is the space between randomly placed spherical holes, near the percolation threshold. This model can be mapped onto a bond percolation model where the conductance s...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-11, Vol.64 (5 Pt 2), p.056105-056105, Article 056105 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 056105 |
---|---|
container_issue | 5 Pt 2 |
container_start_page | 056105 |
container_title | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics |
container_volume | 64 |
creator | Stenull, O Janssen, H K |
description | We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese model, where the conducting medium is the space between randomly placed spherical holes, near the percolation threshold. This model can be mapped onto a bond percolation model where the conductance sigma of randomly occupied bonds is drawn from a probability distribution of the form sigma(-a). Employing the methods of renormalized field theory we show to arbitrary order in epsilon expansion that the critical conductivity exponent of the Swiss-cheese model is given by t(SC)(a) = (d-2)nu + max[phi,(1-a)(-1)], where d is the spatial dimension and nu and phi denote the critical exponents for the percolation correlation length and resistance, respectively. Our result confirms a conjecture that is based on the "nodes, links, and blobs" picture of percolation clusters. |
doi_str_mv | 10.1103/PhysRevE.64.056105 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72343020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72343020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-a00e5bf6b726d9053f8617102944e4ac0004bba33fc69385d4ed027d83aad5b03</originalsourceid><addsrcrecordid>eNpFkE1Lw0AYhBdRbK3-AQ-Sk7fUd_fdj-QopX5AQRE9L5vdjUaSbM0mhfx7U1rxNDMwM4eHkGsKS0oB716_xvjmd-ul5EsQkoI4IXMKuUhRZep08gLzyQsxIxcxfgMgw4yfkxmlCiVQNifpKrRusH21q_oxCWViQ9tX7TA0ydZ3NtRmSp9JHGPvm3hJzkpTR3911AX5eFi_r57Szcvj8-p-k1qUeZ8aAC-KUhaKSZeDwDKTVFFgOeeeGwsAvCgMYmlljplw3DtgymVojBMF4ILcHn63XfgZfOx1U0Xr69q0PgxRK4Ycge2L7FC0XYix86XedlVjulFT0HtI-g-SllwfIE2jm-P7UDTe_U-OVPAXt0lj8A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72343020</pqid></control><display><type>article</type><title>Conductivity of continuum percolating systems</title><source>American Physical Society Journals</source><creator>Stenull, O ; Janssen, H K</creator><creatorcontrib>Stenull, O ; Janssen, H K</creatorcontrib><description>We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese model, where the conducting medium is the space between randomly placed spherical holes, near the percolation threshold. This model can be mapped onto a bond percolation model where the conductance sigma of randomly occupied bonds is drawn from a probability distribution of the form sigma(-a). Employing the methods of renormalized field theory we show to arbitrary order in epsilon expansion that the critical conductivity exponent of the Swiss-cheese model is given by t(SC)(a) = (d-2)nu + max[phi,(1-a)(-1)], where d is the spatial dimension and nu and phi denote the critical exponents for the percolation correlation length and resistance, respectively. Our result confirms a conjecture that is based on the "nodes, links, and blobs" picture of percolation clusters.</description><identifier>ISSN: 1539-3755</identifier><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.64.056105</identifier><identifier>PMID: 11736012</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-11, Vol.64 (5 Pt 2), p.056105-056105, Article 056105</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-a00e5bf6b726d9053f8617102944e4ac0004bba33fc69385d4ed027d83aad5b03</citedby><cites>FETCH-LOGICAL-c369t-a00e5bf6b726d9053f8617102944e4ac0004bba33fc69385d4ed027d83aad5b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11736012$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stenull, O</creatorcontrib><creatorcontrib>Janssen, H K</creatorcontrib><title>Conductivity of continuum percolating systems</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese model, where the conducting medium is the space between randomly placed spherical holes, near the percolation threshold. This model can be mapped onto a bond percolation model where the conductance sigma of randomly occupied bonds is drawn from a probability distribution of the form sigma(-a). Employing the methods of renormalized field theory we show to arbitrary order in epsilon expansion that the critical conductivity exponent of the Swiss-cheese model is given by t(SC)(a) = (d-2)nu + max[phi,(1-a)(-1)], where d is the spatial dimension and nu and phi denote the critical exponents for the percolation correlation length and resistance, respectively. Our result confirms a conjecture that is based on the "nodes, links, and blobs" picture of percolation clusters.</description><issn>1539-3755</issn><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpFkE1Lw0AYhBdRbK3-AQ-Sk7fUd_fdj-QopX5AQRE9L5vdjUaSbM0mhfx7U1rxNDMwM4eHkGsKS0oB716_xvjmd-ul5EsQkoI4IXMKuUhRZep08gLzyQsxIxcxfgMgw4yfkxmlCiVQNifpKrRusH21q_oxCWViQ9tX7TA0ydZ3NtRmSp9JHGPvm3hJzkpTR3911AX5eFi_r57Szcvj8-p-k1qUeZ8aAC-KUhaKSZeDwDKTVFFgOeeeGwsAvCgMYmlljplw3DtgymVojBMF4ILcHn63XfgZfOx1U0Xr69q0PgxRK4Ycge2L7FC0XYix86XedlVjulFT0HtI-g-SllwfIE2jm-P7UDTe_U-OVPAXt0lj8A</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Stenull, O</creator><creator>Janssen, H K</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011101</creationdate><title>Conductivity of continuum percolating systems</title><author>Stenull, O ; Janssen, H K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-a00e5bf6b726d9053f8617102944e4ac0004bba33fc69385d4ed027d83aad5b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Stenull, O</creatorcontrib><creatorcontrib>Janssen, H K</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stenull, O</au><au>Janssen, H K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductivity of continuum percolating systems</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>64</volume><issue>5 Pt 2</issue><spage>056105</spage><epage>056105</epage><pages>056105-056105</pages><artnum>056105</artnum><issn>1539-3755</issn><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese model, where the conducting medium is the space between randomly placed spherical holes, near the percolation threshold. This model can be mapped onto a bond percolation model where the conductance sigma of randomly occupied bonds is drawn from a probability distribution of the form sigma(-a). Employing the methods of renormalized field theory we show to arbitrary order in epsilon expansion that the critical conductivity exponent of the Swiss-cheese model is given by t(SC)(a) = (d-2)nu + max[phi,(1-a)(-1)], where d is the spatial dimension and nu and phi denote the critical exponents for the percolation correlation length and resistance, respectively. Our result confirms a conjecture that is based on the "nodes, links, and blobs" picture of percolation clusters.</abstract><cop>United States</cop><pmid>11736012</pmid><doi>10.1103/PhysRevE.64.056105</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2001-11, Vol.64 (5 Pt 2), p.056105-056105, Article 056105 |
issn | 1539-3755 1063-651X 1095-3787 |
language | eng |
recordid | cdi_proquest_miscellaneous_72343020 |
source | American Physical Society Journals |
title | Conductivity of continuum percolating systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductivity%20of%20continuum%20percolating%20systems&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Stenull,%20O&rft.date=2001-11-01&rft.volume=64&rft.issue=5%20Pt%202&rft.spage=056105&rft.epage=056105&rft.pages=056105-056105&rft.artnum=056105&rft.issn=1539-3755&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.64.056105&rft_dat=%3Cproquest_cross%3E72343020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72343020&rft_id=info:pmid/11736012&rfr_iscdi=true |