In Vivo Modeling of Interstitial Pressure in the Brain Under Surgical Load Using Finite Elements

Current brain deformation models have predominantly reflected solid constitutive relationships generated from empirical ex vivo data and have largely overlooked interstitial hydrodynamic effects. In the context of a technique to update images intraoperatively for image-guided neuronavigation, we hav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomechanical engineering 2000-08, Vol.122 (4), p.354-363
Hauptverfasser: Miga, Michael I, Paulsen, Keith D, Hoopes, P. Jack, Kennedy, Francis E, Hartov, Alex, Roberts, David W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 4
container_start_page 354
container_title Journal of biomechanical engineering
container_volume 122
creator Miga, Michael I
Paulsen, Keith D
Hoopes, P. Jack
Kennedy, Francis E
Hartov, Alex
Roberts, David W
description Current brain deformation models have predominantly reflected solid constitutive relationships generated from empirical ex vivo data and have largely overlooked interstitial hydrodynamic effects. In the context of a technique to update images intraoperatively for image-guided neuronavigation, we have developed and quantified the deformation characteristics of a three-dimensional porous media finite element model of brain deformation in vivo. Results have demonstrated at least 75–85 percent predictive capability, but have also indicated that interstitial hydrodynamics are important. In this paper we investigate interstitial pressure transient behavior in brain tissue when subjected to an acute surgical load consistent with neurosurgical events. Data are presented from three in vivo porcine experiments where subsurface tissue deformation and interhemispheric pressure gradients were measured under conditions of an applied mechanical deformation and then compared to calculations with our three-dimensional brain model. Results demonstrate that porous-media consolidation captures the hydraulic behavior of brain tissue subjected to comparable surgical loads and that the experimental protocol causes minimal trauma to porcine brain tissue. Working values for hydraulic conductivity of white and gray matter are also reported and an assessment of transient pressure gradient effects with respect to deformation is provided. [S0148-0731(00)00804-9]
doi_str_mv 10.1115/1.1288207
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72337094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72337094</sourcerecordid><originalsourceid>FETCH-LOGICAL-a329t-1c7def73d81ffe32779d83c1273654f20f1382dd1cbe326a9bc4fb381b144f193</originalsourceid><addsrcrecordid>eNpF0UFLHDEUwPFQKnWrHnoulIAg9DBrXjKzyRyruHVhRaFdr2lm8mIjMxmbzAh--0Z20FMC-eUR_iHkC7AlAFTnsASuFGfyA1lAxVWh6go-kgWDUhVMCjgkn1N6ZAxAlewTOQRgYlVVakH-bAK9988DvRksdj480MHRTRgxptGP3nT0LmJKU0TqAx3_Ir2IJu92wWKkv6b44NuMtoOxdJde76998CPSqw57DGM6JgfOdAlP5vWI7NZXvy-vi-3tz83lj21hBK_HAlpp0UlhFTiHgktZWyVa4DI_tHScORCKWwttk09Xpm7a0jVCQQNl6aAWR-RsP_cpDv8mTKPufWqx60zAYUpaciEkq8sMv-9hG4eUIjr9FH1v4osGpl9zatBzzmy_zUOnpkf7Lud-GZzOwKTcwUUTWp_enKxF_o-svu6VST3qx2GKIafQZVVXYiX-A2xJg-s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72337094</pqid></control><display><type>article</type><title>In Vivo Modeling of Interstitial Pressure in the Brain Under Surgical Load Using Finite Elements</title><source>MEDLINE</source><source>ASME Transactions Journals (Current)</source><creator>Miga, Michael I ; Paulsen, Keith D ; Hoopes, P. Jack ; Kennedy, Francis E ; Hartov, Alex ; Roberts, David W</creator><creatorcontrib>Miga, Michael I ; Paulsen, Keith D ; Hoopes, P. Jack ; Kennedy, Francis E ; Hartov, Alex ; Roberts, David W</creatorcontrib><description>Current brain deformation models have predominantly reflected solid constitutive relationships generated from empirical ex vivo data and have largely overlooked interstitial hydrodynamic effects. In the context of a technique to update images intraoperatively for image-guided neuronavigation, we have developed and quantified the deformation characteristics of a three-dimensional porous media finite element model of brain deformation in vivo. Results have demonstrated at least 75–85 percent predictive capability, but have also indicated that interstitial hydrodynamics are important. In this paper we investigate interstitial pressure transient behavior in brain tissue when subjected to an acute surgical load consistent with neurosurgical events. Data are presented from three in vivo porcine experiments where subsurface tissue deformation and interhemispheric pressure gradients were measured under conditions of an applied mechanical deformation and then compared to calculations with our three-dimensional brain model. Results demonstrate that porous-media consolidation captures the hydraulic behavior of brain tissue subjected to comparable surgical loads and that the experimental protocol causes minimal trauma to porcine brain tissue. Working values for hydraulic conductivity of white and gray matter are also reported and an assessment of transient pressure gradient effects with respect to deformation is provided. [S0148-0731(00)00804-9]</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.1288207</identifier><identifier>PMID: 11036558</identifier><identifier>CODEN: JBENDY</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Animals ; Bias ; Biological and medical sciences ; Biomechanical Phenomena ; Brain - surgery ; Computer Simulation ; Disease Models, Animal ; Finite Element Analysis ; Intracranial Hypertension - diagnosis ; Intracranial Hypertension - etiology ; Intracranial Hypertension - physiopathology ; Intraoperative Complications - diagnosis ; Intraoperative Complications - etiology ; Intraoperative Complications - physiopathology ; Magnetic Resonance Imaging ; Medical sciences ; Neurosurgery ; Predictive Value of Tests ; Pressure ; Skull, brain, vascular surgery ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Swine ; Tomography, X-Ray Computed</subject><ispartof>Journal of biomechanical engineering, 2000-08, Vol.122 (4), p.354-363</ispartof><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a329t-1c7def73d81ffe32779d83c1273654f20f1382dd1cbe326a9bc4fb381b144f193</citedby><cites>FETCH-LOGICAL-a329t-1c7def73d81ffe32779d83c1273654f20f1382dd1cbe326a9bc4fb381b144f193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,38497</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=793152$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11036558$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Miga, Michael I</creatorcontrib><creatorcontrib>Paulsen, Keith D</creatorcontrib><creatorcontrib>Hoopes, P. Jack</creatorcontrib><creatorcontrib>Kennedy, Francis E</creatorcontrib><creatorcontrib>Hartov, Alex</creatorcontrib><creatorcontrib>Roberts, David W</creatorcontrib><title>In Vivo Modeling of Interstitial Pressure in the Brain Under Surgical Load Using Finite Elements</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>Current brain deformation models have predominantly reflected solid constitutive relationships generated from empirical ex vivo data and have largely overlooked interstitial hydrodynamic effects. In the context of a technique to update images intraoperatively for image-guided neuronavigation, we have developed and quantified the deformation characteristics of a three-dimensional porous media finite element model of brain deformation in vivo. Results have demonstrated at least 75–85 percent predictive capability, but have also indicated that interstitial hydrodynamics are important. In this paper we investigate interstitial pressure transient behavior in brain tissue when subjected to an acute surgical load consistent with neurosurgical events. Data are presented from three in vivo porcine experiments where subsurface tissue deformation and interhemispheric pressure gradients were measured under conditions of an applied mechanical deformation and then compared to calculations with our three-dimensional brain model. Results demonstrate that porous-media consolidation captures the hydraulic behavior of brain tissue subjected to comparable surgical loads and that the experimental protocol causes minimal trauma to porcine brain tissue. Working values for hydraulic conductivity of white and gray matter are also reported and an assessment of transient pressure gradient effects with respect to deformation is provided. [S0148-0731(00)00804-9]</description><subject>Animals</subject><subject>Bias</subject><subject>Biological and medical sciences</subject><subject>Biomechanical Phenomena</subject><subject>Brain - surgery</subject><subject>Computer Simulation</subject><subject>Disease Models, Animal</subject><subject>Finite Element Analysis</subject><subject>Intracranial Hypertension - diagnosis</subject><subject>Intracranial Hypertension - etiology</subject><subject>Intracranial Hypertension - physiopathology</subject><subject>Intraoperative Complications - diagnosis</subject><subject>Intraoperative Complications - etiology</subject><subject>Intraoperative Complications - physiopathology</subject><subject>Magnetic Resonance Imaging</subject><subject>Medical sciences</subject><subject>Neurosurgery</subject><subject>Predictive Value of Tests</subject><subject>Pressure</subject><subject>Skull, brain, vascular surgery</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Swine</subject><subject>Tomography, X-Ray Computed</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpF0UFLHDEUwPFQKnWrHnoulIAg9DBrXjKzyRyruHVhRaFdr2lm8mIjMxmbzAh--0Z20FMC-eUR_iHkC7AlAFTnsASuFGfyA1lAxVWh6go-kgWDUhVMCjgkn1N6ZAxAlewTOQRgYlVVakH-bAK9988DvRksdj480MHRTRgxptGP3nT0LmJKU0TqAx3_Ir2IJu92wWKkv6b44NuMtoOxdJde76998CPSqw57DGM6JgfOdAlP5vWI7NZXvy-vi-3tz83lj21hBK_HAlpp0UlhFTiHgktZWyVa4DI_tHScORCKWwttk09Xpm7a0jVCQQNl6aAWR-RsP_cpDv8mTKPufWqx60zAYUpaciEkq8sMv-9hG4eUIjr9FH1v4osGpl9zatBzzmy_zUOnpkf7Lud-GZzOwKTcwUUTWp_enKxF_o-svu6VST3qx2GKIafQZVVXYiX-A2xJg-s</recordid><startdate>20000801</startdate><enddate>20000801</enddate><creator>Miga, Michael I</creator><creator>Paulsen, Keith D</creator><creator>Hoopes, P. Jack</creator><creator>Kennedy, Francis E</creator><creator>Hartov, Alex</creator><creator>Roberts, David W</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000801</creationdate><title>In Vivo Modeling of Interstitial Pressure in the Brain Under Surgical Load Using Finite Elements</title><author>Miga, Michael I ; Paulsen, Keith D ; Hoopes, P. Jack ; Kennedy, Francis E ; Hartov, Alex ; Roberts, David W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a329t-1c7def73d81ffe32779d83c1273654f20f1382dd1cbe326a9bc4fb381b144f193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Bias</topic><topic>Biological and medical sciences</topic><topic>Biomechanical Phenomena</topic><topic>Brain - surgery</topic><topic>Computer Simulation</topic><topic>Disease Models, Animal</topic><topic>Finite Element Analysis</topic><topic>Intracranial Hypertension - diagnosis</topic><topic>Intracranial Hypertension - etiology</topic><topic>Intracranial Hypertension - physiopathology</topic><topic>Intraoperative Complications - diagnosis</topic><topic>Intraoperative Complications - etiology</topic><topic>Intraoperative Complications - physiopathology</topic><topic>Magnetic Resonance Imaging</topic><topic>Medical sciences</topic><topic>Neurosurgery</topic><topic>Predictive Value of Tests</topic><topic>Pressure</topic><topic>Skull, brain, vascular surgery</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Swine</topic><topic>Tomography, X-Ray Computed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miga, Michael I</creatorcontrib><creatorcontrib>Paulsen, Keith D</creatorcontrib><creatorcontrib>Hoopes, P. Jack</creatorcontrib><creatorcontrib>Kennedy, Francis E</creatorcontrib><creatorcontrib>Hartov, Alex</creatorcontrib><creatorcontrib>Roberts, David W</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miga, Michael I</au><au>Paulsen, Keith D</au><au>Hoopes, P. Jack</au><au>Kennedy, Francis E</au><au>Hartov, Alex</au><au>Roberts, David W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Vivo Modeling of Interstitial Pressure in the Brain Under Surgical Load Using Finite Elements</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>2000-08-01</date><risdate>2000</risdate><volume>122</volume><issue>4</issue><spage>354</spage><epage>363</epage><pages>354-363</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><coden>JBENDY</coden><abstract>Current brain deformation models have predominantly reflected solid constitutive relationships generated from empirical ex vivo data and have largely overlooked interstitial hydrodynamic effects. In the context of a technique to update images intraoperatively for image-guided neuronavigation, we have developed and quantified the deformation characteristics of a three-dimensional porous media finite element model of brain deformation in vivo. Results have demonstrated at least 75–85 percent predictive capability, but have also indicated that interstitial hydrodynamics are important. In this paper we investigate interstitial pressure transient behavior in brain tissue when subjected to an acute surgical load consistent with neurosurgical events. Data are presented from three in vivo porcine experiments where subsurface tissue deformation and interhemispheric pressure gradients were measured under conditions of an applied mechanical deformation and then compared to calculations with our three-dimensional brain model. Results demonstrate that porous-media consolidation captures the hydraulic behavior of brain tissue subjected to comparable surgical loads and that the experimental protocol causes minimal trauma to porcine brain tissue. Working values for hydraulic conductivity of white and gray matter are also reported and an assessment of transient pressure gradient effects with respect to deformation is provided. [S0148-0731(00)00804-9]</abstract><cop>New York, NY</cop><pub>ASME</pub><pmid>11036558</pmid><doi>10.1115/1.1288207</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0731
ispartof Journal of biomechanical engineering, 2000-08, Vol.122 (4), p.354-363
issn 0148-0731
1528-8951
language eng
recordid cdi_proquest_miscellaneous_72337094
source MEDLINE; ASME Transactions Journals (Current)
subjects Animals
Bias
Biological and medical sciences
Biomechanical Phenomena
Brain - surgery
Computer Simulation
Disease Models, Animal
Finite Element Analysis
Intracranial Hypertension - diagnosis
Intracranial Hypertension - etiology
Intracranial Hypertension - physiopathology
Intraoperative Complications - diagnosis
Intraoperative Complications - etiology
Intraoperative Complications - physiopathology
Magnetic Resonance Imaging
Medical sciences
Neurosurgery
Predictive Value of Tests
Pressure
Skull, brain, vascular surgery
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Swine
Tomography, X-Ray Computed
title In Vivo Modeling of Interstitial Pressure in the Brain Under Surgical Load Using Finite Elements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T13%3A30%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Vivo%20Modeling%20of%20Interstitial%20Pressure%20in%20the%20Brain%20Under%20Surgical%20Load%20Using%20Finite%20Elements&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Miga,%20Michael%20I&rft.date=2000-08-01&rft.volume=122&rft.issue=4&rft.spage=354&rft.epage=363&rft.pages=354-363&rft.issn=0148-0731&rft.eissn=1528-8951&rft.coden=JBENDY&rft_id=info:doi/10.1115/1.1288207&rft_dat=%3Cproquest_cross%3E72337094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72337094&rft_id=info:pmid/11036558&rfr_iscdi=true