Time evolution of the Partridge-Barton model

The time evolution of the Partridge-Barton model in the presence of the pleiotropic constraint and deleterious somatic mutations is exactly solved for arbitrary fecundity in the context of a matricial formalism. Analytical expressions for the time dependence of the mean survival probabilities are de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2000-05, Vol.61 (5 Pt B), p.5664-5667
Hauptverfasser: Onody, R N, de Medeiros, N G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5667
container_issue 5 Pt B
container_start_page 5664
container_title Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
container_volume 61
creator Onody, R N
de Medeiros, N G
description The time evolution of the Partridge-Barton model in the presence of the pleiotropic constraint and deleterious somatic mutations is exactly solved for arbitrary fecundity in the context of a matricial formalism. Analytical expressions for the time dependence of the mean survival probabilities are derived. Using the fact that the asymptotic behavior for large time t is controlled by the largest matrix eigenvalue, we obtain the steady state values for the mean survival probabilities and the Malthusian growth exponent. The mean age of the population exhibits a t-1 power law decayment. Some Monte Carlo simulations were also performed and they corroborated our theoretical results.
doi_str_mv 10.1103/PhysRevE.61.5664
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72334656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72334656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-b4757f47c275d5f7d9887ec4c5b159aaec25fed3d465911f8f57f31c03f504233</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRbK3ePUlOnkzdzX4lRy31AwoWqeBtSXZnbSTp1t2k0P_eDa04l3kMv_dgHkLXBE8JwfR-ud6Hd9jNp4JMuRDsBI0JLnhKZS5PBy1oKjj5HKGLEL5xHILxORoNZiIyNkZ3q7qFBHau6bvabRJnk24NybL0na_NF6SPUcV76ww0l-jMlk2Aq-OeoI-n-Wr2ki7enl9nD4tUUyq7tGKSS8ukziQ33EpT5LkEzTSvCC_KEnTGLRhqmOAFITa3EadEY2o5ZhmlE3R7yN1699ND6FRbBw1NU27A9UHJyESviCA-gNq7EDxYtfV1W_q9IlgNT6q_hpQgamgoWm6O2X3Vgvk3HCuhvxw-YfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72334656</pqid></control><display><type>article</type><title>Time evolution of the Partridge-Barton model</title><source>MEDLINE</source><source>American Physical Society Journals</source><creator>Onody, R N ; de Medeiros, N G</creator><creatorcontrib>Onody, R N ; de Medeiros, N G</creatorcontrib><description>The time evolution of the Partridge-Barton model in the presence of the pleiotropic constraint and deleterious somatic mutations is exactly solved for arbitrary fecundity in the context of a matricial formalism. Analytical expressions for the time dependence of the mean survival probabilities are derived. Using the fact that the asymptotic behavior for large time t is controlled by the largest matrix eigenvalue, we obtain the steady state values for the mean survival probabilities and the Malthusian growth exponent. The mean age of the population exhibits a t-1 power law decayment. Some Monte Carlo simulations were also performed and they corroborated our theoretical results.</description><identifier>ISSN: 1063-651X</identifier><identifier>EISSN: 1095-3787</identifier><identifier>DOI: 10.1103/PhysRevE.61.5664</identifier><identifier>PMID: 11031624</identifier><language>eng</language><publisher>United States</publisher><subject>Biological Evolution ; Gene Deletion ; Models, Genetic ; Mutation ; Probability ; Time</subject><ispartof>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2000-05, Vol.61 (5 Pt B), p.5664-5667</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-b4757f47c275d5f7d9887ec4c5b159aaec25fed3d465911f8f57f31c03f504233</citedby><cites>FETCH-LOGICAL-c337t-b4757f47c275d5f7d9887ec4c5b159aaec25fed3d465911f8f57f31c03f504233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11031624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Onody, R N</creatorcontrib><creatorcontrib>de Medeiros, N G</creatorcontrib><title>Time evolution of the Partridge-Barton model</title><title>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</title><addtitle>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics</addtitle><description>The time evolution of the Partridge-Barton model in the presence of the pleiotropic constraint and deleterious somatic mutations is exactly solved for arbitrary fecundity in the context of a matricial formalism. Analytical expressions for the time dependence of the mean survival probabilities are derived. Using the fact that the asymptotic behavior for large time t is controlled by the largest matrix eigenvalue, we obtain the steady state values for the mean survival probabilities and the Malthusian growth exponent. The mean age of the population exhibits a t-1 power law decayment. Some Monte Carlo simulations were also performed and they corroborated our theoretical results.</description><subject>Biological Evolution</subject><subject>Gene Deletion</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Probability</subject><subject>Time</subject><issn>1063-651X</issn><issn>1095-3787</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkM1Lw0AQxRdRbK3ePUlOnkzdzX4lRy31AwoWqeBtSXZnbSTp1t2k0P_eDa04l3kMv_dgHkLXBE8JwfR-ud6Hd9jNp4JMuRDsBI0JLnhKZS5PBy1oKjj5HKGLEL5xHILxORoNZiIyNkZ3q7qFBHau6bvabRJnk24NybL0na_NF6SPUcV76ww0l-jMlk2Aq-OeoI-n-Wr2ki7enl9nD4tUUyq7tGKSS8ukziQ33EpT5LkEzTSvCC_KEnTGLRhqmOAFITa3EadEY2o5ZhmlE3R7yN1699ND6FRbBw1NU27A9UHJyESviCA-gNq7EDxYtfV1W_q9IlgNT6q_hpQgamgoWm6O2X3Vgvk3HCuhvxw-YfA</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Onody, R N</creator><creator>de Medeiros, N G</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20000501</creationdate><title>Time evolution of the Partridge-Barton model</title><author>Onody, R N ; de Medeiros, N G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-b4757f47c275d5f7d9887ec4c5b159aaec25fed3d465911f8f57f31c03f504233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Biological Evolution</topic><topic>Gene Deletion</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Probability</topic><topic>Time</topic><toplevel>online_resources</toplevel><creatorcontrib>Onody, R N</creatorcontrib><creatorcontrib>de Medeiros, N G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Onody, R N</au><au>de Medeiros, N G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time evolution of the Partridge-Barton model</atitle><jtitle>Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics</jtitle><addtitle>Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics</addtitle><date>2000-05-01</date><risdate>2000</risdate><volume>61</volume><issue>5 Pt B</issue><spage>5664</spage><epage>5667</epage><pages>5664-5667</pages><issn>1063-651X</issn><eissn>1095-3787</eissn><abstract>The time evolution of the Partridge-Barton model in the presence of the pleiotropic constraint and deleterious somatic mutations is exactly solved for arbitrary fecundity in the context of a matricial formalism. Analytical expressions for the time dependence of the mean survival probabilities are derived. Using the fact that the asymptotic behavior for large time t is controlled by the largest matrix eigenvalue, we obtain the steady state values for the mean survival probabilities and the Malthusian growth exponent. The mean age of the population exhibits a t-1 power law decayment. Some Monte Carlo simulations were also performed and they corroborated our theoretical results.</abstract><cop>United States</cop><pmid>11031624</pmid><doi>10.1103/PhysRevE.61.5664</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-651X
ispartof Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2000-05, Vol.61 (5 Pt B), p.5664-5667
issn 1063-651X
1095-3787
language eng
recordid cdi_proquest_miscellaneous_72334656
source MEDLINE; American Physical Society Journals
subjects Biological Evolution
Gene Deletion
Models, Genetic
Mutation
Probability
Time
title Time evolution of the Partridge-Barton model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20evolution%20of%20the%20Partridge-Barton%20model&rft.jtitle=Physical%20review.%20E,%20Statistical%20physics,%20plasmas,%20fluids,%20and%20related%20interdisciplinary%20topics&rft.au=Onody,%20R%20N&rft.date=2000-05-01&rft.volume=61&rft.issue=5%20Pt%20B&rft.spage=5664&rft.epage=5667&rft.pages=5664-5667&rft.issn=1063-651X&rft.eissn=1095-3787&rft_id=info:doi/10.1103/PhysRevE.61.5664&rft_dat=%3Cproquest_cross%3E72334656%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72334656&rft_id=info:pmid/11031624&rfr_iscdi=true