A repressor-response regulator gene pair controlling jadomycin B production in Streptomyces venezuelae ISP5230
A second regulatory gene (jadR(1)) is located immediately upstream of the putative repressor gene (jadR(2)) in the jad cluster for biosynthesis of the antibiotic jadomycin B in Streptomyces venezuelae ISP5230. It encodes a 234-amino acid polypeptide with a sequence resembling those of response regul...
Gespeichert in:
Veröffentlicht in: | Gene 2001-11, Vol.279 (2), p.165-173 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A second regulatory gene (jadR(1)) is located immediately upstream of the putative repressor gene (jadR(2)) in the jad cluster for biosynthesis of the antibiotic jadomycin B in Streptomyces venezuelae ISP5230. It encodes a 234-amino acid polypeptide with a sequence resembling those of response regulator proteins in two-component control systems. Features in the conserved C-terminal domain of JadR(1) place the protein in the OmpR-PhoB subfamily of response regulators. In mutants where jadR(1) was deleted or disrupted, jadomycin B was not produced, implying that the gene has an essential role in biosynthesis of the antibiotic. Cloning jadR(1) from S. venezuelae in pJV73A, and introducing additional copies of the gene into the wild-type parent by plasmid transformation gave unstable strains with pJV73A integrated into the chromosome. The transformants initially showed increased production of jadomycin B but gave lower titers as excess copies of jadR(1) were lost; mature cultures stabilized with a wild-type level of antibiotic production. The mutant from which jadR(1) had been deleted could not be transformed with pJV73A. Altering the composition of jadR genes in the chromosome by integration of vectors carrying intact and disrupted copies of jadR(1) and jadR(2) provided evidence that the two genes form a regulatory pair different in function from previously reported two-component systems controlling antibiotic biosynthesis in streptomycetes. |
---|---|
ISSN: | 0378-1119 |
DOI: | 10.1016/S0378-1119(01)00723-5 |