Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development
Histone acetyltransferases regulate transcription, but little is known about the role of these enzymes in developmental processes. Gcn5 (encoded by Gcn5l2 ) and Pcaf, mouse histone acetyltransferases, share similar sequences and enzymatic activities 1 . Both interact with p300 and CBP (encoded by Ep...
Gespeichert in:
Veröffentlicht in: | Nature genetics 2000-10, Vol.26 (2), p.229-232 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 232 |
---|---|
container_issue | 2 |
container_start_page | 229 |
container_title | Nature genetics |
container_volume | 26 |
creator | Xu, Wanting Edmondson, Diane G. Evrard, Yvonne A. Wakamiya, Maki Behringer, Richard R. Roth, Sharon Y. |
description | Histone acetyltransferases regulate transcription, but little is known about the role of these enzymes in developmental processes. Gcn5 (encoded by
Gcn5l2
) and Pcaf, mouse histone acetyltransferases, share similar sequences and enzymatic activities
1
. Both interact with p300 and CBP (encoded by
Ep300
and
Crebbp
, respectively), two other histone acetyltransferases that integrate multiple signalling pathways
1
. Pcaf is thought to participate in many of the cellular processes regulated by p300/CBP (refs
2
–
8
), but the functions of Gcn5 are unknown in mammalian cells. Here we show that the gene
Pcaf
is dispensable in mice. In contrast,
Gcn5l2
-null embryos die during embryogenesis. These embryos develop normally to 7.5 days post coitum (d.p.c.), but their growth is severely retarded by 8.5 d.p.c. and they fail to form dorsal mesoderm lineages, including chordamesoderm and paraxial mesoderm. Differentiation of extra-embryonic and cardiac mesoderm seems to be unaffected. Loss of the dorsal mesoderm lineages is due to a high incidence of apoptosis in the
Gcn5l2
mutants that begins before the onset of morphological abnormality. Embryos null for both
Gcn5l2
and
Pcaf
show even more severe defects, indicating that these histone acetyltransferases have overlapping functions during embryogenesis. Our studies are the first to demonstrate that specific acetyltransferases are required for cell survival and mesoderm formation during mammalian development. |
doi_str_mv | 10.1038/79973 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72309630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183437893</galeid><sourcerecordid>A183437893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-99baf7cb5101cd3e9cbe2e6991b581c7928df66e7f8499bf198338b85eb4ad473</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK39CxIUBS-m5mvycVlKrYWFQqveeBEyyckyZWYyJjOi_75Zd2HZUlByccLhOS_v-aiqU4LPCGbqk9RasmfVMWm4qIkk6nn5Y0Fqjpk4ql7lfI8x4Ryrl9URIZhIrPhx9WMVc0YxoCs3Nj1FPVif0RxRN7oENoNHdorTHHOXkR09GiBHD2mwPfIQwM0Z-SV14xoNcclQkr-gj9MA4_y6ehFsn-F0F0-qb58vv158qVc3V9cX56va8WK91rq1Qbq2KaacZ6BdCxSE1qRtFHFSU-WDECCD4oUNRCvGVKsaaLn1XLKT6sNWd0rx5wJ5NkOXHfS9HaF4MpIyrAXD_wSJ1FgIQgv49hF4H5c0liYMpVRwysVG7d0WWtseTDeGOCfrNormnCjGmVSaFersCao8D0Pn4gihK_mDgo8HBYWZ4fe8tkvO5vru9v_Zm--H7Pst61JZeYJgptQNNv0xBJvNCZm_J1S4N7vel3YAv6d2N7OfYp42e4e0H86h0gM0hsgj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222642460</pqid></control><display><type>article</type><title>Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Xu, Wanting ; Edmondson, Diane G. ; Evrard, Yvonne A. ; Wakamiya, Maki ; Behringer, Richard R. ; Roth, Sharon Y.</creator><creatorcontrib>Xu, Wanting ; Edmondson, Diane G. ; Evrard, Yvonne A. ; Wakamiya, Maki ; Behringer, Richard R. ; Roth, Sharon Y.</creatorcontrib><description>Histone acetyltransferases regulate transcription, but little is known about the role of these enzymes in developmental processes. Gcn5 (encoded by
Gcn5l2
) and Pcaf, mouse histone acetyltransferases, share similar sequences and enzymatic activities
1
. Both interact with p300 and CBP (encoded by
Ep300
and
Crebbp
, respectively), two other histone acetyltransferases that integrate multiple signalling pathways
1
. Pcaf is thought to participate in many of the cellular processes regulated by p300/CBP (refs
2
–
8
), but the functions of Gcn5 are unknown in mammalian cells. Here we show that the gene
Pcaf
is dispensable in mice. In contrast,
Gcn5l2
-null embryos die during embryogenesis. These embryos develop normally to 7.5 days post coitum (d.p.c.), but their growth is severely retarded by 8.5 d.p.c. and they fail to form dorsal mesoderm lineages, including chordamesoderm and paraxial mesoderm. Differentiation of extra-embryonic and cardiac mesoderm seems to be unaffected. Loss of the dorsal mesoderm lineages is due to a high incidence of apoptosis in the
Gcn5l2
mutants that begins before the onset of morphological abnormality. Embryos null for both
Gcn5l2
and
Pcaf
show even more severe defects, indicating that these histone acetyltransferases have overlapping functions during embryogenesis. Our studies are the first to demonstrate that specific acetyltransferases are required for cell survival and mesoderm formation during mammalian development.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/79973</identifier><identifier>PMID: 11017084</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Abnormalities, Multiple - embryology ; Abnormalities, Multiple - genetics ; Acetyltransferases - deficiency ; Acetyltransferases - genetics ; Acetyltransferases - metabolism ; Agriculture ; Animal Genetics and Genomics ; Animals ; Apoptosis ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell Cycle Proteins ; Embryonic and Fetal Development - genetics ; Embryonic growth stage ; Embryos ; Enzymatic activity ; Enzymes ; Fetal Death ; Gcn512 gene ; Gene Deletion ; Gene Expression Regulation, Developmental ; Gene Function ; Gene mutations ; Genetic aspects ; Genetic transcription ; Genomic Library ; Heart ; Histone Acetyltransferases ; Human Genetics ; Hybridization ; Kinases ; letter ; Mammals ; Mesoderm - physiology ; Mice ; Mice, Knockout ; p300-CBP Transcription Factors ; Pcaf gene ; Physiological aspects ; Saccharomyces cerevisiae Proteins ; Thymus gland ; Trans-Activators - deficiency ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors</subject><ispartof>Nature genetics, 2000-10, Vol.26 (2), p.229-232</ispartof><rights>Nature America Inc. 2000</rights><rights>COPYRIGHT 2000 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4103-99baf7cb5101cd3e9cbe2e6991b581c7928df66e7f8499bf198338b85eb4ad473</citedby><cites>FETCH-LOGICAL-c4103-99baf7cb5101cd3e9cbe2e6991b581c7928df66e7f8499bf198338b85eb4ad473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/79973$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/79973$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11017084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Wanting</creatorcontrib><creatorcontrib>Edmondson, Diane G.</creatorcontrib><creatorcontrib>Evrard, Yvonne A.</creatorcontrib><creatorcontrib>Wakamiya, Maki</creatorcontrib><creatorcontrib>Behringer, Richard R.</creatorcontrib><creatorcontrib>Roth, Sharon Y.</creatorcontrib><title>Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Histone acetyltransferases regulate transcription, but little is known about the role of these enzymes in developmental processes. Gcn5 (encoded by
Gcn5l2
) and Pcaf, mouse histone acetyltransferases, share similar sequences and enzymatic activities
1
. Both interact with p300 and CBP (encoded by
Ep300
and
Crebbp
, respectively), two other histone acetyltransferases that integrate multiple signalling pathways
1
. Pcaf is thought to participate in many of the cellular processes regulated by p300/CBP (refs
2
–
8
), but the functions of Gcn5 are unknown in mammalian cells. Here we show that the gene
Pcaf
is dispensable in mice. In contrast,
Gcn5l2
-null embryos die during embryogenesis. These embryos develop normally to 7.5 days post coitum (d.p.c.), but their growth is severely retarded by 8.5 d.p.c. and they fail to form dorsal mesoderm lineages, including chordamesoderm and paraxial mesoderm. Differentiation of extra-embryonic and cardiac mesoderm seems to be unaffected. Loss of the dorsal mesoderm lineages is due to a high incidence of apoptosis in the
Gcn5l2
mutants that begins before the onset of morphological abnormality. Embryos null for both
Gcn5l2
and
Pcaf
show even more severe defects, indicating that these histone acetyltransferases have overlapping functions during embryogenesis. Our studies are the first to demonstrate that specific acetyltransferases are required for cell survival and mesoderm formation during mammalian development.</description><subject>Abnormalities, Multiple - embryology</subject><subject>Abnormalities, Multiple - genetics</subject><subject>Acetyltransferases - deficiency</subject><subject>Acetyltransferases - genetics</subject><subject>Acetyltransferases - metabolism</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell Cycle Proteins</subject><subject>Embryonic and Fetal Development - genetics</subject><subject>Embryonic growth stage</subject><subject>Embryos</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Fetal Death</subject><subject>Gcn512 gene</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Function</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genomic Library</subject><subject>Heart</subject><subject>Histone Acetyltransferases</subject><subject>Human Genetics</subject><subject>Hybridization</subject><subject>Kinases</subject><subject>letter</subject><subject>Mammals</subject><subject>Mesoderm - physiology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>p300-CBP Transcription Factors</subject><subject>Pcaf gene</subject><subject>Physiological aspects</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Thymus gland</subject><subject>Trans-Activators - deficiency</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1rFDEUhgdRbK39CxIUBS-m5mvycVlKrYWFQqveeBEyyckyZWYyJjOi_75Zd2HZUlByccLhOS_v-aiqU4LPCGbqk9RasmfVMWm4qIkk6nn5Y0Fqjpk4ql7lfI8x4Ryrl9URIZhIrPhx9WMVc0YxoCs3Nj1FPVif0RxRN7oENoNHdorTHHOXkR09GiBHD2mwPfIQwM0Z-SV14xoNcclQkr-gj9MA4_y6ehFsn-F0F0-qb58vv158qVc3V9cX56va8WK91rq1Qbq2KaacZ6BdCxSE1qRtFHFSU-WDECCD4oUNRCvGVKsaaLn1XLKT6sNWd0rx5wJ5NkOXHfS9HaF4MpIyrAXD_wSJ1FgIQgv49hF4H5c0liYMpVRwysVG7d0WWtseTDeGOCfrNormnCjGmVSaFersCao8D0Pn4gihK_mDgo8HBYWZ4fe8tkvO5vru9v_Zm--H7Pst61JZeYJgptQNNv0xBJvNCZm_J1S4N7vel3YAv6d2N7OfYp42e4e0H86h0gM0hsgj</recordid><startdate>200010</startdate><enddate>200010</enddate><creator>Xu, Wanting</creator><creator>Edmondson, Diane G.</creator><creator>Evrard, Yvonne A.</creator><creator>Wakamiya, Maki</creator><creator>Behringer, Richard R.</creator><creator>Roth, Sharon Y.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200010</creationdate><title>Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development</title><author>Xu, Wanting ; Edmondson, Diane G. ; Evrard, Yvonne A. ; Wakamiya, Maki ; Behringer, Richard R. ; Roth, Sharon Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-99baf7cb5101cd3e9cbe2e6991b581c7928df66e7f8499bf198338b85eb4ad473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Abnormalities, Multiple - embryology</topic><topic>Abnormalities, Multiple - genetics</topic><topic>Acetyltransferases - deficiency</topic><topic>Acetyltransferases - genetics</topic><topic>Acetyltransferases - metabolism</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell Cycle Proteins</topic><topic>Embryonic and Fetal Development - genetics</topic><topic>Embryonic growth stage</topic><topic>Embryos</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Fetal Death</topic><topic>Gcn512 gene</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Function</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genomic Library</topic><topic>Heart</topic><topic>Histone Acetyltransferases</topic><topic>Human Genetics</topic><topic>Hybridization</topic><topic>Kinases</topic><topic>letter</topic><topic>Mammals</topic><topic>Mesoderm - physiology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>p300-CBP Transcription Factors</topic><topic>Pcaf gene</topic><topic>Physiological aspects</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Thymus gland</topic><topic>Trans-Activators - deficiency</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wanting</creatorcontrib><creatorcontrib>Edmondson, Diane G.</creatorcontrib><creatorcontrib>Evrard, Yvonne A.</creatorcontrib><creatorcontrib>Wakamiya, Maki</creatorcontrib><creatorcontrib>Behringer, Richard R.</creatorcontrib><creatorcontrib>Roth, Sharon Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wanting</au><au>Edmondson, Diane G.</au><au>Evrard, Yvonne A.</au><au>Wakamiya, Maki</au><au>Behringer, Richard R.</au><au>Roth, Sharon Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2000-10</date><risdate>2000</risdate><volume>26</volume><issue>2</issue><spage>229</spage><epage>232</epage><pages>229-232</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Histone acetyltransferases regulate transcription, but little is known about the role of these enzymes in developmental processes. Gcn5 (encoded by
Gcn5l2
) and Pcaf, mouse histone acetyltransferases, share similar sequences and enzymatic activities
1
. Both interact with p300 and CBP (encoded by
Ep300
and
Crebbp
, respectively), two other histone acetyltransferases that integrate multiple signalling pathways
1
. Pcaf is thought to participate in many of the cellular processes regulated by p300/CBP (refs
2
–
8
), but the functions of Gcn5 are unknown in mammalian cells. Here we show that the gene
Pcaf
is dispensable in mice. In contrast,
Gcn5l2
-null embryos die during embryogenesis. These embryos develop normally to 7.5 days post coitum (d.p.c.), but their growth is severely retarded by 8.5 d.p.c. and they fail to form dorsal mesoderm lineages, including chordamesoderm and paraxial mesoderm. Differentiation of extra-embryonic and cardiac mesoderm seems to be unaffected. Loss of the dorsal mesoderm lineages is due to a high incidence of apoptosis in the
Gcn5l2
mutants that begins before the onset of morphological abnormality. Embryos null for both
Gcn5l2
and
Pcaf
show even more severe defects, indicating that these histone acetyltransferases have overlapping functions during embryogenesis. Our studies are the first to demonstrate that specific acetyltransferases are required for cell survival and mesoderm formation during mammalian development.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>11017084</pmid><doi>10.1038/79973</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1061-4036 |
ispartof | Nature genetics, 2000-10, Vol.26 (2), p.229-232 |
issn | 1061-4036 1546-1718 |
language | eng |
recordid | cdi_proquest_miscellaneous_72309630 |
source | MEDLINE; SpringerLink Journals; Nature |
subjects | Abnormalities, Multiple - embryology Abnormalities, Multiple - genetics Acetyltransferases - deficiency Acetyltransferases - genetics Acetyltransferases - metabolism Agriculture Animal Genetics and Genomics Animals Apoptosis Biomedical and Life Sciences Biomedicine Cancer Research Cell Cycle Proteins Embryonic and Fetal Development - genetics Embryonic growth stage Embryos Enzymatic activity Enzymes Fetal Death Gcn512 gene Gene Deletion Gene Expression Regulation, Developmental Gene Function Gene mutations Genetic aspects Genetic transcription Genomic Library Heart Histone Acetyltransferases Human Genetics Hybridization Kinases letter Mammals Mesoderm - physiology Mice Mice, Knockout p300-CBP Transcription Factors Pcaf gene Physiological aspects Saccharomyces cerevisiae Proteins Thymus gland Trans-Activators - deficiency Trans-Activators - genetics Trans-Activators - metabolism Transcription Factors |
title | Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20Gcn5l2%20leads%20to%20increased%20apoptosis%20and%20mesodermal%20defects%20during%20mouse%20development&rft.jtitle=Nature%20genetics&rft.au=Xu,%20Wanting&rft.date=2000-10&rft.volume=26&rft.issue=2&rft.spage=229&rft.epage=232&rft.pages=229-232&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/79973&rft_dat=%3Cgale_proqu%3EA183437893%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222642460&rft_id=info:pmid/11017084&rft_galeid=A183437893&rfr_iscdi=true |