Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development

Histone acetyltransferases regulate transcription, but little is known about the role of these enzymes in developmental processes. Gcn5 (encoded by Gcn5l2 ) and Pcaf, mouse histone acetyltransferases, share similar sequences and enzymatic activities 1 . Both interact with p300 and CBP (encoded by Ep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature genetics 2000-10, Vol.26 (2), p.229-232
Hauptverfasser: Xu, Wanting, Edmondson, Diane G., Evrard, Yvonne A., Wakamiya, Maki, Behringer, Richard R., Roth, Sharon Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 232
container_issue 2
container_start_page 229
container_title Nature genetics
container_volume 26
creator Xu, Wanting
Edmondson, Diane G.
Evrard, Yvonne A.
Wakamiya, Maki
Behringer, Richard R.
Roth, Sharon Y.
description Histone acetyltransferases regulate transcription, but little is known about the role of these enzymes in developmental processes. Gcn5 (encoded by Gcn5l2 ) and Pcaf, mouse histone acetyltransferases, share similar sequences and enzymatic activities 1 . Both interact with p300 and CBP (encoded by Ep300 and Crebbp , respectively), two other histone acetyltransferases that integrate multiple signalling pathways 1 . Pcaf is thought to participate in many of the cellular processes regulated by p300/CBP (refs 2 – 8 ), but the functions of Gcn5 are unknown in mammalian cells. Here we show that the gene Pcaf is dispensable in mice. In contrast, Gcn5l2 -null embryos die during embryogenesis. These embryos develop normally to 7.5 days post coitum (d.p.c.), but their growth is severely retarded by 8.5 d.p.c. and they fail to form dorsal mesoderm lineages, including chordamesoderm and paraxial mesoderm. Differentiation of extra-embryonic and cardiac mesoderm seems to be unaffected. Loss of the dorsal mesoderm lineages is due to a high incidence of apoptosis in the Gcn5l2 mutants that begins before the onset of morphological abnormality. Embryos null for both Gcn5l2 and Pcaf show even more severe defects, indicating that these histone acetyltransferases have overlapping functions during embryogenesis. Our studies are the first to demonstrate that specific acetyltransferases are required for cell survival and mesoderm formation during mammalian development.
doi_str_mv 10.1038/79973
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_72309630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A183437893</galeid><sourcerecordid>A183437893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4103-99baf7cb5101cd3e9cbe2e6991b581c7928df66e7f8499bf198338b85eb4ad473</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK39CxIUBS-m5mvycVlKrYWFQqveeBEyyckyZWYyJjOi_75Zd2HZUlByccLhOS_v-aiqU4LPCGbqk9RasmfVMWm4qIkk6nn5Y0Fqjpk4ql7lfI8x4Ryrl9URIZhIrPhx9WMVc0YxoCs3Nj1FPVif0RxRN7oENoNHdorTHHOXkR09GiBHD2mwPfIQwM0Z-SV14xoNcclQkr-gj9MA4_y6ehFsn-F0F0-qb58vv158qVc3V9cX56va8WK91rq1Qbq2KaacZ6BdCxSE1qRtFHFSU-WDECCD4oUNRCvGVKsaaLn1XLKT6sNWd0rx5wJ5NkOXHfS9HaF4MpIyrAXD_wSJ1FgIQgv49hF4H5c0liYMpVRwysVG7d0WWtseTDeGOCfrNormnCjGmVSaFersCao8D0Pn4gihK_mDgo8HBYWZ4fe8tkvO5vru9v_Zm--H7Pst61JZeYJgptQNNv0xBJvNCZm_J1S4N7vel3YAv6d2N7OfYp42e4e0H86h0gM0hsgj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222642460</pqid></control><display><type>article</type><title>Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature</source><creator>Xu, Wanting ; Edmondson, Diane G. ; Evrard, Yvonne A. ; Wakamiya, Maki ; Behringer, Richard R. ; Roth, Sharon Y.</creator><creatorcontrib>Xu, Wanting ; Edmondson, Diane G. ; Evrard, Yvonne A. ; Wakamiya, Maki ; Behringer, Richard R. ; Roth, Sharon Y.</creatorcontrib><description>Histone acetyltransferases regulate transcription, but little is known about the role of these enzymes in developmental processes. Gcn5 (encoded by Gcn5l2 ) and Pcaf, mouse histone acetyltransferases, share similar sequences and enzymatic activities 1 . Both interact with p300 and CBP (encoded by Ep300 and Crebbp , respectively), two other histone acetyltransferases that integrate multiple signalling pathways 1 . Pcaf is thought to participate in many of the cellular processes regulated by p300/CBP (refs 2 – 8 ), but the functions of Gcn5 are unknown in mammalian cells. Here we show that the gene Pcaf is dispensable in mice. In contrast, Gcn5l2 -null embryos die during embryogenesis. These embryos develop normally to 7.5 days post coitum (d.p.c.), but their growth is severely retarded by 8.5 d.p.c. and they fail to form dorsal mesoderm lineages, including chordamesoderm and paraxial mesoderm. Differentiation of extra-embryonic and cardiac mesoderm seems to be unaffected. Loss of the dorsal mesoderm lineages is due to a high incidence of apoptosis in the Gcn5l2 mutants that begins before the onset of morphological abnormality. Embryos null for both Gcn5l2 and Pcaf show even more severe defects, indicating that these histone acetyltransferases have overlapping functions during embryogenesis. Our studies are the first to demonstrate that specific acetyltransferases are required for cell survival and mesoderm formation during mammalian development.</description><identifier>ISSN: 1061-4036</identifier><identifier>EISSN: 1546-1718</identifier><identifier>DOI: 10.1038/79973</identifier><identifier>PMID: 11017084</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Abnormalities, Multiple - embryology ; Abnormalities, Multiple - genetics ; Acetyltransferases - deficiency ; Acetyltransferases - genetics ; Acetyltransferases - metabolism ; Agriculture ; Animal Genetics and Genomics ; Animals ; Apoptosis ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell Cycle Proteins ; Embryonic and Fetal Development - genetics ; Embryonic growth stage ; Embryos ; Enzymatic activity ; Enzymes ; Fetal Death ; Gcn512 gene ; Gene Deletion ; Gene Expression Regulation, Developmental ; Gene Function ; Gene mutations ; Genetic aspects ; Genetic transcription ; Genomic Library ; Heart ; Histone Acetyltransferases ; Human Genetics ; Hybridization ; Kinases ; letter ; Mammals ; Mesoderm - physiology ; Mice ; Mice, Knockout ; p300-CBP Transcription Factors ; Pcaf gene ; Physiological aspects ; Saccharomyces cerevisiae Proteins ; Thymus gland ; Trans-Activators - deficiency ; Trans-Activators - genetics ; Trans-Activators - metabolism ; Transcription Factors</subject><ispartof>Nature genetics, 2000-10, Vol.26 (2), p.229-232</ispartof><rights>Nature America Inc. 2000</rights><rights>COPYRIGHT 2000 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Oct 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4103-99baf7cb5101cd3e9cbe2e6991b581c7928df66e7f8499bf198338b85eb4ad473</citedby><cites>FETCH-LOGICAL-c4103-99baf7cb5101cd3e9cbe2e6991b581c7928df66e7f8499bf198338b85eb4ad473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/79973$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/79973$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11017084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Wanting</creatorcontrib><creatorcontrib>Edmondson, Diane G.</creatorcontrib><creatorcontrib>Evrard, Yvonne A.</creatorcontrib><creatorcontrib>Wakamiya, Maki</creatorcontrib><creatorcontrib>Behringer, Richard R.</creatorcontrib><creatorcontrib>Roth, Sharon Y.</creatorcontrib><title>Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development</title><title>Nature genetics</title><addtitle>Nat Genet</addtitle><addtitle>Nat Genet</addtitle><description>Histone acetyltransferases regulate transcription, but little is known about the role of these enzymes in developmental processes. Gcn5 (encoded by Gcn5l2 ) and Pcaf, mouse histone acetyltransferases, share similar sequences and enzymatic activities 1 . Both interact with p300 and CBP (encoded by Ep300 and Crebbp , respectively), two other histone acetyltransferases that integrate multiple signalling pathways 1 . Pcaf is thought to participate in many of the cellular processes regulated by p300/CBP (refs 2 – 8 ), but the functions of Gcn5 are unknown in mammalian cells. Here we show that the gene Pcaf is dispensable in mice. In contrast, Gcn5l2 -null embryos die during embryogenesis. These embryos develop normally to 7.5 days post coitum (d.p.c.), but their growth is severely retarded by 8.5 d.p.c. and they fail to form dorsal mesoderm lineages, including chordamesoderm and paraxial mesoderm. Differentiation of extra-embryonic and cardiac mesoderm seems to be unaffected. Loss of the dorsal mesoderm lineages is due to a high incidence of apoptosis in the Gcn5l2 mutants that begins before the onset of morphological abnormality. Embryos null for both Gcn5l2 and Pcaf show even more severe defects, indicating that these histone acetyltransferases have overlapping functions during embryogenesis. Our studies are the first to demonstrate that specific acetyltransferases are required for cell survival and mesoderm formation during mammalian development.</description><subject>Abnormalities, Multiple - embryology</subject><subject>Abnormalities, Multiple - genetics</subject><subject>Acetyltransferases - deficiency</subject><subject>Acetyltransferases - genetics</subject><subject>Acetyltransferases - metabolism</subject><subject>Agriculture</subject><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell Cycle Proteins</subject><subject>Embryonic and Fetal Development - genetics</subject><subject>Embryonic growth stage</subject><subject>Embryos</subject><subject>Enzymatic activity</subject><subject>Enzymes</subject><subject>Fetal Death</subject><subject>Gcn512 gene</subject><subject>Gene Deletion</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Function</subject><subject>Gene mutations</subject><subject>Genetic aspects</subject><subject>Genetic transcription</subject><subject>Genomic Library</subject><subject>Heart</subject><subject>Histone Acetyltransferases</subject><subject>Human Genetics</subject><subject>Hybridization</subject><subject>Kinases</subject><subject>letter</subject><subject>Mammals</subject><subject>Mesoderm - physiology</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>p300-CBP Transcription Factors</subject><subject>Pcaf gene</subject><subject>Physiological aspects</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Thymus gland</subject><subject>Trans-Activators - deficiency</subject><subject>Trans-Activators - genetics</subject><subject>Trans-Activators - metabolism</subject><subject>Transcription Factors</subject><issn>1061-4036</issn><issn>1546-1718</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkl1rFDEUhgdRbK39CxIUBS-m5mvycVlKrYWFQqveeBEyyckyZWYyJjOi_75Zd2HZUlByccLhOS_v-aiqU4LPCGbqk9RasmfVMWm4qIkk6nn5Y0Fqjpk4ql7lfI8x4Ryrl9URIZhIrPhx9WMVc0YxoCs3Nj1FPVif0RxRN7oENoNHdorTHHOXkR09GiBHD2mwPfIQwM0Z-SV14xoNcclQkr-gj9MA4_y6ehFsn-F0F0-qb58vv158qVc3V9cX56va8WK91rq1Qbq2KaacZ6BdCxSE1qRtFHFSU-WDECCD4oUNRCvGVKsaaLn1XLKT6sNWd0rx5wJ5NkOXHfS9HaF4MpIyrAXD_wSJ1FgIQgv49hF4H5c0liYMpVRwysVG7d0WWtseTDeGOCfrNormnCjGmVSaFersCao8D0Pn4gihK_mDgo8HBYWZ4fe8tkvO5vru9v_Zm--H7Pst61JZeYJgptQNNv0xBJvNCZm_J1S4N7vel3YAv6d2N7OfYp42e4e0H86h0gM0hsgj</recordid><startdate>200010</startdate><enddate>200010</enddate><creator>Xu, Wanting</creator><creator>Edmondson, Diane G.</creator><creator>Evrard, Yvonne A.</creator><creator>Wakamiya, Maki</creator><creator>Behringer, Richard R.</creator><creator>Roth, Sharon Y.</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>200010</creationdate><title>Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development</title><author>Xu, Wanting ; Edmondson, Diane G. ; Evrard, Yvonne A. ; Wakamiya, Maki ; Behringer, Richard R. ; Roth, Sharon Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4103-99baf7cb5101cd3e9cbe2e6991b581c7928df66e7f8499bf198338b85eb4ad473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Abnormalities, Multiple - embryology</topic><topic>Abnormalities, Multiple - genetics</topic><topic>Acetyltransferases - deficiency</topic><topic>Acetyltransferases - genetics</topic><topic>Acetyltransferases - metabolism</topic><topic>Agriculture</topic><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell Cycle Proteins</topic><topic>Embryonic and Fetal Development - genetics</topic><topic>Embryonic growth stage</topic><topic>Embryos</topic><topic>Enzymatic activity</topic><topic>Enzymes</topic><topic>Fetal Death</topic><topic>Gcn512 gene</topic><topic>Gene Deletion</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Function</topic><topic>Gene mutations</topic><topic>Genetic aspects</topic><topic>Genetic transcription</topic><topic>Genomic Library</topic><topic>Heart</topic><topic>Histone Acetyltransferases</topic><topic>Human Genetics</topic><topic>Hybridization</topic><topic>Kinases</topic><topic>letter</topic><topic>Mammals</topic><topic>Mesoderm - physiology</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>p300-CBP Transcription Factors</topic><topic>Pcaf gene</topic><topic>Physiological aspects</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Thymus gland</topic><topic>Trans-Activators - deficiency</topic><topic>Trans-Activators - genetics</topic><topic>Trans-Activators - metabolism</topic><topic>Transcription Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wanting</creatorcontrib><creatorcontrib>Edmondson, Diane G.</creatorcontrib><creatorcontrib>Evrard, Yvonne A.</creatorcontrib><creatorcontrib>Wakamiya, Maki</creatorcontrib><creatorcontrib>Behringer, Richard R.</creatorcontrib><creatorcontrib>Roth, Sharon Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Wanting</au><au>Edmondson, Diane G.</au><au>Evrard, Yvonne A.</au><au>Wakamiya, Maki</au><au>Behringer, Richard R.</au><au>Roth, Sharon Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development</atitle><jtitle>Nature genetics</jtitle><stitle>Nat Genet</stitle><addtitle>Nat Genet</addtitle><date>2000-10</date><risdate>2000</risdate><volume>26</volume><issue>2</issue><spage>229</spage><epage>232</epage><pages>229-232</pages><issn>1061-4036</issn><eissn>1546-1718</eissn><abstract>Histone acetyltransferases regulate transcription, but little is known about the role of these enzymes in developmental processes. Gcn5 (encoded by Gcn5l2 ) and Pcaf, mouse histone acetyltransferases, share similar sequences and enzymatic activities 1 . Both interact with p300 and CBP (encoded by Ep300 and Crebbp , respectively), two other histone acetyltransferases that integrate multiple signalling pathways 1 . Pcaf is thought to participate in many of the cellular processes regulated by p300/CBP (refs 2 – 8 ), but the functions of Gcn5 are unknown in mammalian cells. Here we show that the gene Pcaf is dispensable in mice. In contrast, Gcn5l2 -null embryos die during embryogenesis. These embryos develop normally to 7.5 days post coitum (d.p.c.), but their growth is severely retarded by 8.5 d.p.c. and they fail to form dorsal mesoderm lineages, including chordamesoderm and paraxial mesoderm. Differentiation of extra-embryonic and cardiac mesoderm seems to be unaffected. Loss of the dorsal mesoderm lineages is due to a high incidence of apoptosis in the Gcn5l2 mutants that begins before the onset of morphological abnormality. Embryos null for both Gcn5l2 and Pcaf show even more severe defects, indicating that these histone acetyltransferases have overlapping functions during embryogenesis. Our studies are the first to demonstrate that specific acetyltransferases are required for cell survival and mesoderm formation during mammalian development.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>11017084</pmid><doi>10.1038/79973</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1061-4036
ispartof Nature genetics, 2000-10, Vol.26 (2), p.229-232
issn 1061-4036
1546-1718
language eng
recordid cdi_proquest_miscellaneous_72309630
source MEDLINE; SpringerLink Journals; Nature
subjects Abnormalities, Multiple - embryology
Abnormalities, Multiple - genetics
Acetyltransferases - deficiency
Acetyltransferases - genetics
Acetyltransferases - metabolism
Agriculture
Animal Genetics and Genomics
Animals
Apoptosis
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cell Cycle Proteins
Embryonic and Fetal Development - genetics
Embryonic growth stage
Embryos
Enzymatic activity
Enzymes
Fetal Death
Gcn512 gene
Gene Deletion
Gene Expression Regulation, Developmental
Gene Function
Gene mutations
Genetic aspects
Genetic transcription
Genomic Library
Heart
Histone Acetyltransferases
Human Genetics
Hybridization
Kinases
letter
Mammals
Mesoderm - physiology
Mice
Mice, Knockout
p300-CBP Transcription Factors
Pcaf gene
Physiological aspects
Saccharomyces cerevisiae Proteins
Thymus gland
Trans-Activators - deficiency
Trans-Activators - genetics
Trans-Activators - metabolism
Transcription Factors
title Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A15%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20Gcn5l2%20leads%20to%20increased%20apoptosis%20and%20mesodermal%20defects%20during%20mouse%20development&rft.jtitle=Nature%20genetics&rft.au=Xu,%20Wanting&rft.date=2000-10&rft.volume=26&rft.issue=2&rft.spage=229&rft.epage=232&rft.pages=229-232&rft.issn=1061-4036&rft.eissn=1546-1718&rft_id=info:doi/10.1038/79973&rft_dat=%3Cgale_proqu%3EA183437893%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222642460&rft_id=info:pmid/11017084&rft_galeid=A183437893&rfr_iscdi=true