Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells

We report a method of purifying, characterizing and expanding endothelial cells (ECs) derived from CD133+ bone marrow cells, a subset of CD34+ haematopoietic progenitors. Isolated using immunomagnetic sorting (mean purity 90 ± 5%), the CD133+ bone marrow cells were grown on fibronectin‐coated flasks...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of haematology 2001-10, Vol.115 (1), p.186-194
Hauptverfasser: Quirici, Nadia, Soligo, Davide, Caneva, Lorenza, Servida, Federica, Bossolasco, Patrizia, Deliliers, Giorgio Lambertenghi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 1
container_start_page 186
container_title British journal of haematology
container_volume 115
creator Quirici, Nadia
Soligo, Davide
Caneva, Lorenza
Servida, Federica
Bossolasco, Patrizia
Deliliers, Giorgio Lambertenghi
description We report a method of purifying, characterizing and expanding endothelial cells (ECs) derived from CD133+ bone marrow cells, a subset of CD34+ haematopoietic progenitors. Isolated using immunomagnetic sorting (mean purity 90 ± 5%), the CD133+ bone marrow cells were grown on fibronectin‐coated flasks in M199 medium supplemented with fetal bovine serum (FBS), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and insulin growth factor (IGF‐1). The CD133+ fraction contained 95 ± 4% CD34+ cells, 3 ± 2% cells expressing VEGF receptor (VEGFR‐2/KDR), but did not express von Willebrand factor (VWF), VE‐cadherin, P1H12 or TE‐7. After 3 weeks of culture, the cells formed a monolayer with a typical EC morphology and expanded 11 ± 5 times. The cells were further purified using Ulex europaeus agglutinin‐1 (UEA‐1)‐fluorescein isothiocyanate (FITC) and anti‐FITC microbeads, and expanded with VEGF for a further 3 weeks. All of the cells were CD45− and CD14−, and expressed several endothelial markers (UEA‐1, VWF, P1H12, CD105, E‐selectin, VCAM‐1 and VE‐cadherin) and typical Weibel–Palade bodies. They had a high proliferative potential (up to a 2400‐fold increase in cell number after 3 weeks of culture) and the capacity to modulate cell surface antigens upon stimulation with inflammatory cytokines. Purified ECs were also co‐cultivated with CD34+ cells, in parallel with a purified fibroblastic cell monolayer. CD34+ cells (10 × 105) gave rise to 17 951 ± 2422 CFU‐GM colonies when grown on endothelial cells, and to 12 928 ± 4415 CFU‐GM colonies on fibroblast monolayers. The ECs also supported erythroid blast‐forming unit (BFU‐E) colonies better. These results suggest that bone marrow CD133+ progenitor cells can give rise to highly purified ECs, which have a high proliferative capacity, can be activated by inflammatory cytokines and are superior to fibroblasts in supporting haematopoiesis. Our data support the hypothesis that endothelial cell progenitors are present in adult bone marrow and may contribute to neo‐angiogenesis.
doi_str_mv 10.1046/j.1365-2141.2001.03077.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72309219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>88340121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5387-60de8c55e5bdab375abe40793c7a63c69a0f90e8322d04f6c3c58b0a11e71a803</originalsourceid><addsrcrecordid>eNqNkM1u1DAURi0EotPCKyALCTZVwr12EjsLFmX6B6rEBthajmOrGSX2YE_U6dvXYUZUYsXKtny-q-8eQihCiVA1nzYl8qYuGFZYMgAsgYMQ5f4FWf39eElWACCKHJAn5DSlTQY51PianCAKxirOVuTX5eCcjdbvBr0bgqfa99Tut9qn5RUctb4Pu3s7Dnqkxo5joi6Gid7Pk_a0C97SSccYHuj6Ejk_PzBvyCunx2TfHs8z8vP66sf6trj7fvN1fXFXmJpLUTTQW2nq2tZdrzsuat3ZCkTLjdANN02rwbVgJWesh8o1hptadqARrUAtgZ-Rj4e52xh-zzbt1DSkpYH2NsxJCcahZdhm8P0_4CbM0eduClvZVE02kiF5gEwMKUXr1DYOebtHhaAW8WqjFr9q8asW8eqPeLXP0XfH-XM32f45eDSdgQ9HQCejRxe1N0N65ipEWTUic58P3MMw2sf_LqC-fLtdbvwJapKcpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198646172</pqid></control><display><type>article</type><title>Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Quirici, Nadia ; Soligo, Davide ; Caneva, Lorenza ; Servida, Federica ; Bossolasco, Patrizia ; Deliliers, Giorgio Lambertenghi</creator><creatorcontrib>Quirici, Nadia ; Soligo, Davide ; Caneva, Lorenza ; Servida, Federica ; Bossolasco, Patrizia ; Deliliers, Giorgio Lambertenghi</creatorcontrib><description>We report a method of purifying, characterizing and expanding endothelial cells (ECs) derived from CD133+ bone marrow cells, a subset of CD34+ haematopoietic progenitors. Isolated using immunomagnetic sorting (mean purity 90 ± 5%), the CD133+ bone marrow cells were grown on fibronectin‐coated flasks in M199 medium supplemented with fetal bovine serum (FBS), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and insulin growth factor (IGF‐1). The CD133+ fraction contained 95 ± 4% CD34+ cells, 3 ± 2% cells expressing VEGF receptor (VEGFR‐2/KDR), but did not express von Willebrand factor (VWF), VE‐cadherin, P1H12 or TE‐7. After 3 weeks of culture, the cells formed a monolayer with a typical EC morphology and expanded 11 ± 5 times. The cells were further purified using Ulex europaeus agglutinin‐1 (UEA‐1)‐fluorescein isothiocyanate (FITC) and anti‐FITC microbeads, and expanded with VEGF for a further 3 weeks. All of the cells were CD45− and CD14−, and expressed several endothelial markers (UEA‐1, VWF, P1H12, CD105, E‐selectin, VCAM‐1 and VE‐cadherin) and typical Weibel–Palade bodies. They had a high proliferative potential (up to a 2400‐fold increase in cell number after 3 weeks of culture) and the capacity to modulate cell surface antigens upon stimulation with inflammatory cytokines. Purified ECs were also co‐cultivated with CD34+ cells, in parallel with a purified fibroblastic cell monolayer. CD34+ cells (10 × 105) gave rise to 17 951 ± 2422 CFU‐GM colonies when grown on endothelial cells, and to 12 928 ± 4415 CFU‐GM colonies on fibroblast monolayers. The ECs also supported erythroid blast‐forming unit (BFU‐E) colonies better. These results suggest that bone marrow CD133+ progenitor cells can give rise to highly purified ECs, which have a high proliferative capacity, can be activated by inflammatory cytokines and are superior to fibroblasts in supporting haematopoiesis. Our data support the hypothesis that endothelial cell progenitors are present in adult bone marrow and may contribute to neo‐angiogenesis.</description><identifier>ISSN: 0007-1048</identifier><identifier>EISSN: 1365-2141</identifier><identifier>DOI: 10.1046/j.1365-2141.2001.03077.x</identifier><identifier>PMID: 11722432</identifier><identifier>CODEN: BJHEAL</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>AC133 Antigen ; angiogenesis ; Antigens, CD ; Antigens, CD34 ; Biological and medical sciences ; bone marrow ; Cell Differentiation ; Cell differentiation, maturation, development, hematopoiesis ; Cell physiology ; Cell Separation - methods ; Coculture Techniques ; Colony-Forming Units Assay ; cytokines ; endothelial cells ; Endothelium, Vascular - cytology ; Endothelium, Vascular - immunology ; Flow Cytometry - methods ; Fundamental and applied biological sciences. Psychology ; Glycoproteins ; Hematology ; Hematopoietic Stem Cells - immunology ; Hematopoietic Stem Cells - physiology ; Humans ; Immunohistochemistry - methods ; Microscopy, Electron ; Microscopy, Phase-Contrast ; Molecular and cellular biology ; Neovascularization, Physiologic ; Peptides ; stem cells</subject><ispartof>British journal of haematology, 2001-10, Vol.115 (1), p.186-194</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright Blackwell Scientific Publications Ltd. Oct 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5387-60de8c55e5bdab375abe40793c7a63c69a0f90e8322d04f6c3c58b0a11e71a803</citedby><cites>FETCH-LOGICAL-c5387-60de8c55e5bdab375abe40793c7a63c69a0f90e8322d04f6c3c58b0a11e71a803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1365-2141.2001.03077.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1365-2141.2001.03077.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14118467$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11722432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Quirici, Nadia</creatorcontrib><creatorcontrib>Soligo, Davide</creatorcontrib><creatorcontrib>Caneva, Lorenza</creatorcontrib><creatorcontrib>Servida, Federica</creatorcontrib><creatorcontrib>Bossolasco, Patrizia</creatorcontrib><creatorcontrib>Deliliers, Giorgio Lambertenghi</creatorcontrib><title>Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells</title><title>British journal of haematology</title><addtitle>Br J Haematol</addtitle><description>We report a method of purifying, characterizing and expanding endothelial cells (ECs) derived from CD133+ bone marrow cells, a subset of CD34+ haematopoietic progenitors. Isolated using immunomagnetic sorting (mean purity 90 ± 5%), the CD133+ bone marrow cells were grown on fibronectin‐coated flasks in M199 medium supplemented with fetal bovine serum (FBS), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and insulin growth factor (IGF‐1). The CD133+ fraction contained 95 ± 4% CD34+ cells, 3 ± 2% cells expressing VEGF receptor (VEGFR‐2/KDR), but did not express von Willebrand factor (VWF), VE‐cadherin, P1H12 or TE‐7. After 3 weeks of culture, the cells formed a monolayer with a typical EC morphology and expanded 11 ± 5 times. The cells were further purified using Ulex europaeus agglutinin‐1 (UEA‐1)‐fluorescein isothiocyanate (FITC) and anti‐FITC microbeads, and expanded with VEGF for a further 3 weeks. All of the cells were CD45− and CD14−, and expressed several endothelial markers (UEA‐1, VWF, P1H12, CD105, E‐selectin, VCAM‐1 and VE‐cadherin) and typical Weibel–Palade bodies. They had a high proliferative potential (up to a 2400‐fold increase in cell number after 3 weeks of culture) and the capacity to modulate cell surface antigens upon stimulation with inflammatory cytokines. Purified ECs were also co‐cultivated with CD34+ cells, in parallel with a purified fibroblastic cell monolayer. CD34+ cells (10 × 105) gave rise to 17 951 ± 2422 CFU‐GM colonies when grown on endothelial cells, and to 12 928 ± 4415 CFU‐GM colonies on fibroblast monolayers. The ECs also supported erythroid blast‐forming unit (BFU‐E) colonies better. These results suggest that bone marrow CD133+ progenitor cells can give rise to highly purified ECs, which have a high proliferative capacity, can be activated by inflammatory cytokines and are superior to fibroblasts in supporting haematopoiesis. Our data support the hypothesis that endothelial cell progenitors are present in adult bone marrow and may contribute to neo‐angiogenesis.</description><subject>AC133 Antigen</subject><subject>angiogenesis</subject><subject>Antigens, CD</subject><subject>Antigens, CD34</subject><subject>Biological and medical sciences</subject><subject>bone marrow</subject><subject>Cell Differentiation</subject><subject>Cell differentiation, maturation, development, hematopoiesis</subject><subject>Cell physiology</subject><subject>Cell Separation - methods</subject><subject>Coculture Techniques</subject><subject>Colony-Forming Units Assay</subject><subject>cytokines</subject><subject>endothelial cells</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - immunology</subject><subject>Flow Cytometry - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycoproteins</subject><subject>Hematology</subject><subject>Hematopoietic Stem Cells - immunology</subject><subject>Hematopoietic Stem Cells - physiology</subject><subject>Humans</subject><subject>Immunohistochemistry - methods</subject><subject>Microscopy, Electron</subject><subject>Microscopy, Phase-Contrast</subject><subject>Molecular and cellular biology</subject><subject>Neovascularization, Physiologic</subject><subject>Peptides</subject><subject>stem cells</subject><issn>0007-1048</issn><issn>1365-2141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkM1u1DAURi0EotPCKyALCTZVwr12EjsLFmX6B6rEBthajmOrGSX2YE_U6dvXYUZUYsXKtny-q-8eQihCiVA1nzYl8qYuGFZYMgAsgYMQ5f4FWf39eElWACCKHJAn5DSlTQY51PianCAKxirOVuTX5eCcjdbvBr0bgqfa99Tut9qn5RUctb4Pu3s7Dnqkxo5joi6Gid7Pk_a0C97SSccYHuj6Ejk_PzBvyCunx2TfHs8z8vP66sf6trj7fvN1fXFXmJpLUTTQW2nq2tZdrzsuat3ZCkTLjdANN02rwbVgJWesh8o1hptadqARrUAtgZ-Rj4e52xh-zzbt1DSkpYH2NsxJCcahZdhm8P0_4CbM0eduClvZVE02kiF5gEwMKUXr1DYOebtHhaAW8WqjFr9q8asW8eqPeLXP0XfH-XM32f45eDSdgQ9HQCejRxe1N0N65ipEWTUic58P3MMw2sf_LqC-fLtdbvwJapKcpQ</recordid><startdate>200110</startdate><enddate>200110</enddate><creator>Quirici, Nadia</creator><creator>Soligo, Davide</creator><creator>Caneva, Lorenza</creator><creator>Servida, Federica</creator><creator>Bossolasco, Patrizia</creator><creator>Deliliers, Giorgio Lambertenghi</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><general>Blackwell Publishing Ltd</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope></search><sort><creationdate>200110</creationdate><title>Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells</title><author>Quirici, Nadia ; Soligo, Davide ; Caneva, Lorenza ; Servida, Federica ; Bossolasco, Patrizia ; Deliliers, Giorgio Lambertenghi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5387-60de8c55e5bdab375abe40793c7a63c69a0f90e8322d04f6c3c58b0a11e71a803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>AC133 Antigen</topic><topic>angiogenesis</topic><topic>Antigens, CD</topic><topic>Antigens, CD34</topic><topic>Biological and medical sciences</topic><topic>bone marrow</topic><topic>Cell Differentiation</topic><topic>Cell differentiation, maturation, development, hematopoiesis</topic><topic>Cell physiology</topic><topic>Cell Separation - methods</topic><topic>Coculture Techniques</topic><topic>Colony-Forming Units Assay</topic><topic>cytokines</topic><topic>endothelial cells</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - immunology</topic><topic>Flow Cytometry - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycoproteins</topic><topic>Hematology</topic><topic>Hematopoietic Stem Cells - immunology</topic><topic>Hematopoietic Stem Cells - physiology</topic><topic>Humans</topic><topic>Immunohistochemistry - methods</topic><topic>Microscopy, Electron</topic><topic>Microscopy, Phase-Contrast</topic><topic>Molecular and cellular biology</topic><topic>Neovascularization, Physiologic</topic><topic>Peptides</topic><topic>stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quirici, Nadia</creatorcontrib><creatorcontrib>Soligo, Davide</creatorcontrib><creatorcontrib>Caneva, Lorenza</creatorcontrib><creatorcontrib>Servida, Federica</creatorcontrib><creatorcontrib>Bossolasco, Patrizia</creatorcontrib><creatorcontrib>Deliliers, Giorgio Lambertenghi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>British journal of haematology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quirici, Nadia</au><au>Soligo, Davide</au><au>Caneva, Lorenza</au><au>Servida, Federica</au><au>Bossolasco, Patrizia</au><au>Deliliers, Giorgio Lambertenghi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells</atitle><jtitle>British journal of haematology</jtitle><addtitle>Br J Haematol</addtitle><date>2001-10</date><risdate>2001</risdate><volume>115</volume><issue>1</issue><spage>186</spage><epage>194</epage><pages>186-194</pages><issn>0007-1048</issn><eissn>1365-2141</eissn><coden>BJHEAL</coden><abstract>We report a method of purifying, characterizing and expanding endothelial cells (ECs) derived from CD133+ bone marrow cells, a subset of CD34+ haematopoietic progenitors. Isolated using immunomagnetic sorting (mean purity 90 ± 5%), the CD133+ bone marrow cells were grown on fibronectin‐coated flasks in M199 medium supplemented with fetal bovine serum (FBS), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and insulin growth factor (IGF‐1). The CD133+ fraction contained 95 ± 4% CD34+ cells, 3 ± 2% cells expressing VEGF receptor (VEGFR‐2/KDR), but did not express von Willebrand factor (VWF), VE‐cadherin, P1H12 or TE‐7. After 3 weeks of culture, the cells formed a monolayer with a typical EC morphology and expanded 11 ± 5 times. The cells were further purified using Ulex europaeus agglutinin‐1 (UEA‐1)‐fluorescein isothiocyanate (FITC) and anti‐FITC microbeads, and expanded with VEGF for a further 3 weeks. All of the cells were CD45− and CD14−, and expressed several endothelial markers (UEA‐1, VWF, P1H12, CD105, E‐selectin, VCAM‐1 and VE‐cadherin) and typical Weibel–Palade bodies. They had a high proliferative potential (up to a 2400‐fold increase in cell number after 3 weeks of culture) and the capacity to modulate cell surface antigens upon stimulation with inflammatory cytokines. Purified ECs were also co‐cultivated with CD34+ cells, in parallel with a purified fibroblastic cell monolayer. CD34+ cells (10 × 105) gave rise to 17 951 ± 2422 CFU‐GM colonies when grown on endothelial cells, and to 12 928 ± 4415 CFU‐GM colonies on fibroblast monolayers. The ECs also supported erythroid blast‐forming unit (BFU‐E) colonies better. These results suggest that bone marrow CD133+ progenitor cells can give rise to highly purified ECs, which have a high proliferative capacity, can be activated by inflammatory cytokines and are superior to fibroblasts in supporting haematopoiesis. Our data support the hypothesis that endothelial cell progenitors are present in adult bone marrow and may contribute to neo‐angiogenesis.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>11722432</pmid><doi>10.1046/j.1365-2141.2001.03077.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1048
ispartof British journal of haematology, 2001-10, Vol.115 (1), p.186-194
issn 0007-1048
1365-2141
language eng
recordid cdi_proquest_miscellaneous_72309219
source Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects AC133 Antigen
angiogenesis
Antigens, CD
Antigens, CD34
Biological and medical sciences
bone marrow
Cell Differentiation
Cell differentiation, maturation, development, hematopoiesis
Cell physiology
Cell Separation - methods
Coculture Techniques
Colony-Forming Units Assay
cytokines
endothelial cells
Endothelium, Vascular - cytology
Endothelium, Vascular - immunology
Flow Cytometry - methods
Fundamental and applied biological sciences. Psychology
Glycoproteins
Hematology
Hematopoietic Stem Cells - immunology
Hematopoietic Stem Cells - physiology
Humans
Immunohistochemistry - methods
Microscopy, Electron
Microscopy, Phase-Contrast
Molecular and cellular biology
Neovascularization, Physiologic
Peptides
stem cells
title Differentiation and expansion of endothelial cells from human bone marrow CD133+ cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A39%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differentiation%20and%20expansion%20of%20endothelial%20cells%20from%20human%20bone%20marrow%20CD133+%20cells&rft.jtitle=British%20journal%20of%20haematology&rft.au=Quirici,%20Nadia&rft.date=2001-10&rft.volume=115&rft.issue=1&rft.spage=186&rft.epage=194&rft.pages=186-194&rft.issn=0007-1048&rft.eissn=1365-2141&rft.coden=BJHEAL&rft_id=info:doi/10.1046/j.1365-2141.2001.03077.x&rft_dat=%3Cproquest_cross%3E88340121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198646172&rft_id=info:pmid/11722432&rfr_iscdi=true