Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron

A Drosophila gene encoding a 351-amino acid-long predicted arginase (40% identity with vertebrate arginases) is reported. Interestingly, the third intron of thearginase gene includes the elav locus, whose coding sequence is on the complementary DNA strand to that of thearginase. Terrestrial vertebra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2000-10, Vol.275 (40), p.31107-31114
1. Verfasser: Samson, Marie-Laure
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31114
container_issue 40
container_start_page 31107
container_title The Journal of biological chemistry
container_volume 275
creator Samson, Marie-Laure
description A Drosophila gene encoding a 351-amino acid-long predicted arginase (40% identity with vertebrate arginases) is reported. Interestingly, the third intron of thearginase gene includes the elav locus, whose coding sequence is on the complementary DNA strand to that of thearginase. Terrestrial vertebrates produce two arginases from duplicated genes. One form, essentially present in the liver, is a key enzyme of the urea cycle and eliminates excess ammonia through the excretion of urea. The function of the extrahepatic arginase, more ubiquitous, is not well understood. In macrophages, arginase competes with nitric-oxide synthase, which converts arginine into nitric oxide. Most organisms, including insects, produce only one type of arginase, whose function is not centered on ammonia detoxification. ADrosophila cDNA encoding a predicted arginase was isolated. It produces a 1.3-kilobase transcript present with highest levels toward the end of embryogenesis and thereafter. During embryogenesis, the arginase transcripts localize to the fat body. The first mutant allele of the Drosophila arginasegene was identified. It is predicted to produce a 199-amino acid-long C-terminally truncated protein, likely to be inactive. Preliminary characterization of the mutation shows that this recessive allele causes a developmental delay but does not affect viability.
doi_str_mv 10.1074/jbc.M001346200
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72298612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820893831</els_id><sourcerecordid>17728578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-58fbf5661a098d262a9a9da677b3ecdef8a772f5c620beb01e2e0f62d2f3caa43</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS0EIkegpUQuULo9bO-HvWV0kHDSBSiCRGd57XHW0a592N6L8t9jtJGgQbiZ5vfeeN5D6C0lW0p48-F-0NsbQmjddIyQZ2hDiairuqU_nqMNIYxWPWvFGXqV0j0pr-npS3RWIC6KaoPcxxhSOI5uUvgy3jmvEuB9wt9iMIsGg20MM1b4S_Anl9WEr8EDvh1Vxrvgs3I-4TwChkmd8CHoJeEHl0fn8T6nwrlo8N7nGPxr9MKqKcGbp3mOvl99ut19rg5fr_e7y0Olm4bkqhV2sG3XUUV6YVjHVK96ozrOhxq0ASsU58y2utw7wEAoMCC2Y4bZWivV1OfoYvU9xvBzgZTl7JKGaVIewpIkZ6wXHWX_BWnZI1ouCrhdQV2yShGsPEY3q_goKZG_W5ClBfmnhSJ49-S8DDOYv_A19gK8X4HR3Y0PLoIcXNAjzJLxVjZE1rT4FkysGJS8Tg6iTNqBL7UUic7SBPevL_wCzqyhvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17728578</pqid></control><display><type>article</type><title>Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Samson, Marie-Laure</creator><creatorcontrib>Samson, Marie-Laure</creatorcontrib><description>A Drosophila gene encoding a 351-amino acid-long predicted arginase (40% identity with vertebrate arginases) is reported. Interestingly, the third intron of thearginase gene includes the elav locus, whose coding sequence is on the complementary DNA strand to that of thearginase. Terrestrial vertebrates produce two arginases from duplicated genes. One form, essentially present in the liver, is a key enzyme of the urea cycle and eliminates excess ammonia through the excretion of urea. The function of the extrahepatic arginase, more ubiquitous, is not well understood. In macrophages, arginase competes with nitric-oxide synthase, which converts arginine into nitric oxide. Most organisms, including insects, produce only one type of arginase, whose function is not centered on ammonia detoxification. ADrosophila cDNA encoding a predicted arginase was isolated. It produces a 1.3-kilobase transcript present with highest levels toward the end of embryogenesis and thereafter. During embryogenesis, the arginase transcripts localize to the fat body. The first mutant allele of the Drosophila arginasegene was identified. It is predicted to produce a 199-amino acid-long C-terminally truncated protein, likely to be inactive. Preliminary characterization of the mutation shows that this recessive allele causes a developmental delay but does not affect viability.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M001346200</identifier><identifier>PMID: 10878001</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alleles ; Amino Acid Sequence ; Animals ; Arginase - biosynthesis ; Arginase - genetics ; Blotting, Northern ; Chromosome Aberrations ; Crosses, Genetic ; DNA, Complementary - metabolism ; Drosophila ; Drosophila - embryology ; Drosophila - enzymology ; Drosophila - genetics ; elav gene ; Fat Body - metabolism ; Gene Library ; In Situ Hybridization ; Introns ; Liver - metabolism ; Macrophages - metabolism ; Models, Genetic ; Molecular Sequence Data ; Nitric Oxide Synthase - metabolism ; Open Reading Frames ; Protein Biosynthesis ; RNA - metabolism ; Sequence Homology, Amino Acid ; Time Factors ; Urea - metabolism</subject><ispartof>The Journal of biological chemistry, 2000-10, Vol.275 (40), p.31107-31114</ispartof><rights>2000 © 2000 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-58fbf5661a098d262a9a9da677b3ecdef8a772f5c620beb01e2e0f62d2f3caa43</citedby><cites>FETCH-LOGICAL-c440t-58fbf5661a098d262a9a9da677b3ecdef8a772f5c620beb01e2e0f62d2f3caa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10878001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samson, Marie-Laure</creatorcontrib><title>Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>A Drosophila gene encoding a 351-amino acid-long predicted arginase (40% identity with vertebrate arginases) is reported. Interestingly, the third intron of thearginase gene includes the elav locus, whose coding sequence is on the complementary DNA strand to that of thearginase. Terrestrial vertebrates produce two arginases from duplicated genes. One form, essentially present in the liver, is a key enzyme of the urea cycle and eliminates excess ammonia through the excretion of urea. The function of the extrahepatic arginase, more ubiquitous, is not well understood. In macrophages, arginase competes with nitric-oxide synthase, which converts arginine into nitric oxide. Most organisms, including insects, produce only one type of arginase, whose function is not centered on ammonia detoxification. ADrosophila cDNA encoding a predicted arginase was isolated. It produces a 1.3-kilobase transcript present with highest levels toward the end of embryogenesis and thereafter. During embryogenesis, the arginase transcripts localize to the fat body. The first mutant allele of the Drosophila arginasegene was identified. It is predicted to produce a 199-amino acid-long C-terminally truncated protein, likely to be inactive. Preliminary characterization of the mutation shows that this recessive allele causes a developmental delay but does not affect viability.</description><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Arginase - biosynthesis</subject><subject>Arginase - genetics</subject><subject>Blotting, Northern</subject><subject>Chromosome Aberrations</subject><subject>Crosses, Genetic</subject><subject>DNA, Complementary - metabolism</subject><subject>Drosophila</subject><subject>Drosophila - embryology</subject><subject>Drosophila - enzymology</subject><subject>Drosophila - genetics</subject><subject>elav gene</subject><subject>Fat Body - metabolism</subject><subject>Gene Library</subject><subject>In Situ Hybridization</subject><subject>Introns</subject><subject>Liver - metabolism</subject><subject>Macrophages - metabolism</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Open Reading Frames</subject><subject>Protein Biosynthesis</subject><subject>RNA - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Time Factors</subject><subject>Urea - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1vFDEQxS0EIkegpUQuULo9bO-HvWV0kHDSBSiCRGd57XHW0a592N6L8t9jtJGgQbiZ5vfeeN5D6C0lW0p48-F-0NsbQmjddIyQZ2hDiairuqU_nqMNIYxWPWvFGXqV0j0pr-npS3RWIC6KaoPcxxhSOI5uUvgy3jmvEuB9wt9iMIsGg20MM1b4S_Anl9WEr8EDvh1Vxrvgs3I-4TwChkmd8CHoJeEHl0fn8T6nwrlo8N7nGPxr9MKqKcGbp3mOvl99ut19rg5fr_e7y0Olm4bkqhV2sG3XUUV6YVjHVK96ozrOhxq0ASsU58y2utw7wEAoMCC2Y4bZWivV1OfoYvU9xvBzgZTl7JKGaVIewpIkZ6wXHWX_BWnZI1ouCrhdQV2yShGsPEY3q_goKZG_W5ClBfmnhSJ49-S8DDOYv_A19gK8X4HR3Y0PLoIcXNAjzJLxVjZE1rT4FkysGJS8Tg6iTNqBL7UUic7SBPevL_wCzqyhvg</recordid><startdate>20001006</startdate><enddate>20001006</enddate><creator>Samson, Marie-Laure</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20001006</creationdate><title>Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron</title><author>Samson, Marie-Laure</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-58fbf5661a098d262a9a9da677b3ecdef8a772f5c620beb01e2e0f62d2f3caa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Arginase - biosynthesis</topic><topic>Arginase - genetics</topic><topic>Blotting, Northern</topic><topic>Chromosome Aberrations</topic><topic>Crosses, Genetic</topic><topic>DNA, Complementary - metabolism</topic><topic>Drosophila</topic><topic>Drosophila - embryology</topic><topic>Drosophila - enzymology</topic><topic>Drosophila - genetics</topic><topic>elav gene</topic><topic>Fat Body - metabolism</topic><topic>Gene Library</topic><topic>In Situ Hybridization</topic><topic>Introns</topic><topic>Liver - metabolism</topic><topic>Macrophages - metabolism</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Open Reading Frames</topic><topic>Protein Biosynthesis</topic><topic>RNA - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Time Factors</topic><topic>Urea - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samson, Marie-Laure</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samson, Marie-Laure</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2000-10-06</date><risdate>2000</risdate><volume>275</volume><issue>40</issue><spage>31107</spage><epage>31114</epage><pages>31107-31114</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>A Drosophila gene encoding a 351-amino acid-long predicted arginase (40% identity with vertebrate arginases) is reported. Interestingly, the third intron of thearginase gene includes the elav locus, whose coding sequence is on the complementary DNA strand to that of thearginase. Terrestrial vertebrates produce two arginases from duplicated genes. One form, essentially present in the liver, is a key enzyme of the urea cycle and eliminates excess ammonia through the excretion of urea. The function of the extrahepatic arginase, more ubiquitous, is not well understood. In macrophages, arginase competes with nitric-oxide synthase, which converts arginine into nitric oxide. Most organisms, including insects, produce only one type of arginase, whose function is not centered on ammonia detoxification. ADrosophila cDNA encoding a predicted arginase was isolated. It produces a 1.3-kilobase transcript present with highest levels toward the end of embryogenesis and thereafter. During embryogenesis, the arginase transcripts localize to the fat body. The first mutant allele of the Drosophila arginasegene was identified. It is predicted to produce a 199-amino acid-long C-terminally truncated protein, likely to be inactive. Preliminary characterization of the mutation shows that this recessive allele causes a developmental delay but does not affect viability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>10878001</pmid><doi>10.1074/jbc.M001346200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2000-10, Vol.275 (40), p.31107-31114
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_72298612
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Alleles
Amino Acid Sequence
Animals
Arginase - biosynthesis
Arginase - genetics
Blotting, Northern
Chromosome Aberrations
Crosses, Genetic
DNA, Complementary - metabolism
Drosophila
Drosophila - embryology
Drosophila - enzymology
Drosophila - genetics
elav gene
Fat Body - metabolism
Gene Library
In Situ Hybridization
Introns
Liver - metabolism
Macrophages - metabolism
Models, Genetic
Molecular Sequence Data
Nitric Oxide Synthase - metabolism
Open Reading Frames
Protein Biosynthesis
RNA - metabolism
Sequence Homology, Amino Acid
Time Factors
Urea - metabolism
title Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drosophila%20Arginase%20Is%20Produced%20from%20a%20Nonvital%20Gene%20That%20Contains%20the%20elav%20Locus%20within%20Its%20Third%20Intron&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Samson,%20Marie-Laure&rft.date=2000-10-06&rft.volume=275&rft.issue=40&rft.spage=31107&rft.epage=31114&rft.pages=31107-31114&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M001346200&rft_dat=%3Cproquest_cross%3E17728578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17728578&rft_id=info:pmid/10878001&rft_els_id=S0021925820893831&rfr_iscdi=true