Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron
A Drosophila gene encoding a 351-amino acid-long predicted arginase (40% identity with vertebrate arginases) is reported. Interestingly, the third intron of thearginase gene includes the elav locus, whose coding sequence is on the complementary DNA strand to that of thearginase. Terrestrial vertebra...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2000-10, Vol.275 (40), p.31107-31114 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 31114 |
---|---|
container_issue | 40 |
container_start_page | 31107 |
container_title | The Journal of biological chemistry |
container_volume | 275 |
creator | Samson, Marie-Laure |
description | A Drosophila gene encoding a 351-amino acid-long predicted arginase (40% identity with vertebrate arginases) is reported. Interestingly, the third intron of thearginase gene includes the elav locus, whose coding sequence is on the complementary DNA strand to that of thearginase. Terrestrial vertebrates produce two arginases from duplicated genes. One form, essentially present in the liver, is a key enzyme of the urea cycle and eliminates excess ammonia through the excretion of urea. The function of the extrahepatic arginase, more ubiquitous, is not well understood. In macrophages, arginase competes with nitric-oxide synthase, which converts arginine into nitric oxide. Most organisms, including insects, produce only one type of arginase, whose function is not centered on ammonia detoxification. ADrosophila cDNA encoding a predicted arginase was isolated. It produces a 1.3-kilobase transcript present with highest levels toward the end of embryogenesis and thereafter. During embryogenesis, the arginase transcripts localize to the fat body. The first mutant allele of the Drosophila arginasegene was identified. It is predicted to produce a 199-amino acid-long C-terminally truncated protein, likely to be inactive. Preliminary characterization of the mutation shows that this recessive allele causes a developmental delay but does not affect viability. |
doi_str_mv | 10.1074/jbc.M001346200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72298612</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820893831</els_id><sourcerecordid>17728578</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-58fbf5661a098d262a9a9da677b3ecdef8a772f5c620beb01e2e0f62d2f3caa43</originalsourceid><addsrcrecordid>eNqFkb1vFDEQxS0EIkegpUQuULo9bO-HvWV0kHDSBSiCRGd57XHW0a592N6L8t9jtJGgQbiZ5vfeeN5D6C0lW0p48-F-0NsbQmjddIyQZ2hDiairuqU_nqMNIYxWPWvFGXqV0j0pr-npS3RWIC6KaoPcxxhSOI5uUvgy3jmvEuB9wt9iMIsGg20MM1b4S_Anl9WEr8EDvh1Vxrvgs3I-4TwChkmd8CHoJeEHl0fn8T6nwrlo8N7nGPxr9MKqKcGbp3mOvl99ut19rg5fr_e7y0Olm4bkqhV2sG3XUUV6YVjHVK96ozrOhxq0ASsU58y2utw7wEAoMCC2Y4bZWivV1OfoYvU9xvBzgZTl7JKGaVIewpIkZ6wXHWX_BWnZI1ouCrhdQV2yShGsPEY3q_goKZG_W5ClBfmnhSJ49-S8DDOYv_A19gK8X4HR3Y0PLoIcXNAjzJLxVjZE1rT4FkysGJS8Tg6iTNqBL7UUic7SBPevL_wCzqyhvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17728578</pqid></control><display><type>article</type><title>Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Samson, Marie-Laure</creator><creatorcontrib>Samson, Marie-Laure</creatorcontrib><description>A Drosophila gene encoding a 351-amino acid-long predicted arginase (40% identity with vertebrate arginases) is reported. Interestingly, the third intron of thearginase gene includes the elav locus, whose coding sequence is on the complementary DNA strand to that of thearginase. Terrestrial vertebrates produce two arginases from duplicated genes. One form, essentially present in the liver, is a key enzyme of the urea cycle and eliminates excess ammonia through the excretion of urea. The function of the extrahepatic arginase, more ubiquitous, is not well understood. In macrophages, arginase competes with nitric-oxide synthase, which converts arginine into nitric oxide. Most organisms, including insects, produce only one type of arginase, whose function is not centered on ammonia detoxification. ADrosophila cDNA encoding a predicted arginase was isolated. It produces a 1.3-kilobase transcript present with highest levels toward the end of embryogenesis and thereafter. During embryogenesis, the arginase transcripts localize to the fat body. The first mutant allele of the Drosophila arginasegene was identified. It is predicted to produce a 199-amino acid-long C-terminally truncated protein, likely to be inactive. Preliminary characterization of the mutation shows that this recessive allele causes a developmental delay but does not affect viability.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M001346200</identifier><identifier>PMID: 10878001</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alleles ; Amino Acid Sequence ; Animals ; Arginase - biosynthesis ; Arginase - genetics ; Blotting, Northern ; Chromosome Aberrations ; Crosses, Genetic ; DNA, Complementary - metabolism ; Drosophila ; Drosophila - embryology ; Drosophila - enzymology ; Drosophila - genetics ; elav gene ; Fat Body - metabolism ; Gene Library ; In Situ Hybridization ; Introns ; Liver - metabolism ; Macrophages - metabolism ; Models, Genetic ; Molecular Sequence Data ; Nitric Oxide Synthase - metabolism ; Open Reading Frames ; Protein Biosynthesis ; RNA - metabolism ; Sequence Homology, Amino Acid ; Time Factors ; Urea - metabolism</subject><ispartof>The Journal of biological chemistry, 2000-10, Vol.275 (40), p.31107-31114</ispartof><rights>2000 © 2000 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-58fbf5661a098d262a9a9da677b3ecdef8a772f5c620beb01e2e0f62d2f3caa43</citedby><cites>FETCH-LOGICAL-c440t-58fbf5661a098d262a9a9da677b3ecdef8a772f5c620beb01e2e0f62d2f3caa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10878001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Samson, Marie-Laure</creatorcontrib><title>Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>A Drosophila gene encoding a 351-amino acid-long predicted arginase (40% identity with vertebrate arginases) is reported. Interestingly, the third intron of thearginase gene includes the elav locus, whose coding sequence is on the complementary DNA strand to that of thearginase. Terrestrial vertebrates produce two arginases from duplicated genes. One form, essentially present in the liver, is a key enzyme of the urea cycle and eliminates excess ammonia through the excretion of urea. The function of the extrahepatic arginase, more ubiquitous, is not well understood. In macrophages, arginase competes with nitric-oxide synthase, which converts arginine into nitric oxide. Most organisms, including insects, produce only one type of arginase, whose function is not centered on ammonia detoxification. ADrosophila cDNA encoding a predicted arginase was isolated. It produces a 1.3-kilobase transcript present with highest levels toward the end of embryogenesis and thereafter. During embryogenesis, the arginase transcripts localize to the fat body. The first mutant allele of the Drosophila arginasegene was identified. It is predicted to produce a 199-amino acid-long C-terminally truncated protein, likely to be inactive. Preliminary characterization of the mutation shows that this recessive allele causes a developmental delay but does not affect viability.</description><subject>Alleles</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Arginase - biosynthesis</subject><subject>Arginase - genetics</subject><subject>Blotting, Northern</subject><subject>Chromosome Aberrations</subject><subject>Crosses, Genetic</subject><subject>DNA, Complementary - metabolism</subject><subject>Drosophila</subject><subject>Drosophila - embryology</subject><subject>Drosophila - enzymology</subject><subject>Drosophila - genetics</subject><subject>elav gene</subject><subject>Fat Body - metabolism</subject><subject>Gene Library</subject><subject>In Situ Hybridization</subject><subject>Introns</subject><subject>Liver - metabolism</subject><subject>Macrophages - metabolism</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Nitric Oxide Synthase - metabolism</subject><subject>Open Reading Frames</subject><subject>Protein Biosynthesis</subject><subject>RNA - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Time Factors</subject><subject>Urea - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkb1vFDEQxS0EIkegpUQuULo9bO-HvWV0kHDSBSiCRGd57XHW0a592N6L8t9jtJGgQbiZ5vfeeN5D6C0lW0p48-F-0NsbQmjddIyQZ2hDiairuqU_nqMNIYxWPWvFGXqV0j0pr-npS3RWIC6KaoPcxxhSOI5uUvgy3jmvEuB9wt9iMIsGg20MM1b4S_Anl9WEr8EDvh1Vxrvgs3I-4TwChkmd8CHoJeEHl0fn8T6nwrlo8N7nGPxr9MKqKcGbp3mOvl99ut19rg5fr_e7y0Olm4bkqhV2sG3XUUV6YVjHVK96ozrOhxq0ASsU58y2utw7wEAoMCC2Y4bZWivV1OfoYvU9xvBzgZTl7JKGaVIewpIkZ6wXHWX_BWnZI1ouCrhdQV2yShGsPEY3q_goKZG_W5ClBfmnhSJ49-S8DDOYv_A19gK8X4HR3Y0PLoIcXNAjzJLxVjZE1rT4FkysGJS8Tg6iTNqBL7UUic7SBPevL_wCzqyhvg</recordid><startdate>20001006</startdate><enddate>20001006</enddate><creator>Samson, Marie-Laure</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SS</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20001006</creationdate><title>Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron</title><author>Samson, Marie-Laure</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-58fbf5661a098d262a9a9da677b3ecdef8a772f5c620beb01e2e0f62d2f3caa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Alleles</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Arginase - biosynthesis</topic><topic>Arginase - genetics</topic><topic>Blotting, Northern</topic><topic>Chromosome Aberrations</topic><topic>Crosses, Genetic</topic><topic>DNA, Complementary - metabolism</topic><topic>Drosophila</topic><topic>Drosophila - embryology</topic><topic>Drosophila - enzymology</topic><topic>Drosophila - genetics</topic><topic>elav gene</topic><topic>Fat Body - metabolism</topic><topic>Gene Library</topic><topic>In Situ Hybridization</topic><topic>Introns</topic><topic>Liver - metabolism</topic><topic>Macrophages - metabolism</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Nitric Oxide Synthase - metabolism</topic><topic>Open Reading Frames</topic><topic>Protein Biosynthesis</topic><topic>RNA - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Time Factors</topic><topic>Urea - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samson, Marie-Laure</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samson, Marie-Laure</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2000-10-06</date><risdate>2000</risdate><volume>275</volume><issue>40</issue><spage>31107</spage><epage>31114</epage><pages>31107-31114</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>A Drosophila gene encoding a 351-amino acid-long predicted arginase (40% identity with vertebrate arginases) is reported. Interestingly, the third intron of thearginase gene includes the elav locus, whose coding sequence is on the complementary DNA strand to that of thearginase. Terrestrial vertebrates produce two arginases from duplicated genes. One form, essentially present in the liver, is a key enzyme of the urea cycle and eliminates excess ammonia through the excretion of urea. The function of the extrahepatic arginase, more ubiquitous, is not well understood. In macrophages, arginase competes with nitric-oxide synthase, which converts arginine into nitric oxide. Most organisms, including insects, produce only one type of arginase, whose function is not centered on ammonia detoxification. ADrosophila cDNA encoding a predicted arginase was isolated. It produces a 1.3-kilobase transcript present with highest levels toward the end of embryogenesis and thereafter. During embryogenesis, the arginase transcripts localize to the fat body. The first mutant allele of the Drosophila arginasegene was identified. It is predicted to produce a 199-amino acid-long C-terminally truncated protein, likely to be inactive. Preliminary characterization of the mutation shows that this recessive allele causes a developmental delay but does not affect viability.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>10878001</pmid><doi>10.1074/jbc.M001346200</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2000-10, Vol.275 (40), p.31107-31114 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_proquest_miscellaneous_72298612 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Alleles Amino Acid Sequence Animals Arginase - biosynthesis Arginase - genetics Blotting, Northern Chromosome Aberrations Crosses, Genetic DNA, Complementary - metabolism Drosophila Drosophila - embryology Drosophila - enzymology Drosophila - genetics elav gene Fat Body - metabolism Gene Library In Situ Hybridization Introns Liver - metabolism Macrophages - metabolism Models, Genetic Molecular Sequence Data Nitric Oxide Synthase - metabolism Open Reading Frames Protein Biosynthesis RNA - metabolism Sequence Homology, Amino Acid Time Factors Urea - metabolism |
title | Drosophila Arginase Is Produced from a Nonvital Gene That Contains the elav Locus within Its Third Intron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A00%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drosophila%20Arginase%20Is%20Produced%20from%20a%20Nonvital%20Gene%20That%20Contains%20the%20elav%20Locus%20within%20Its%20Third%20Intron&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Samson,%20Marie-Laure&rft.date=2000-10-06&rft.volume=275&rft.issue=40&rft.spage=31107&rft.epage=31114&rft.pages=31107-31114&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M001346200&rft_dat=%3Cproquest_cross%3E17728578%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17728578&rft_id=info:pmid/10878001&rft_els_id=S0021925820893831&rfr_iscdi=true |