Novelty detection using products of simple experts—a potential architecture for embedded systems
The ‘Product of Experts’ architecture (concentrating on binary-stochastic elements) is described in the context of its suitability for implementation as mixed-mode hardware, with algorithmic modifications that render the training procedure hardware-implementable. Results show that the PoE is capable...
Gespeichert in:
Veröffentlicht in: | Neural networks 2001-11, Vol.14 (9), p.1257-1264 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1264 |
---|---|
container_issue | 9 |
container_start_page | 1257 |
container_title | Neural networks |
container_volume | 14 |
creator | Murray, Alan F. |
description | The ‘Product of Experts’ architecture (concentrating on binary-stochastic elements) is described in the context of its suitability for implementation as mixed-mode hardware, with algorithmic modifications that render the training procedure hardware-implementable. Results show that the PoE is capable of modelling non-linear, multi-dimensional data drawn from both artificial and real sources. The capability of the PoE to perform on-line novelty detection is described and demonstrated on both artificial and real data. |
doi_str_mv | 10.1016/S0893-6080(01)00097-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72295444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608001000971</els_id><sourcerecordid>72295444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-5ad85e26d5511158fc4ad2cd2d580b51bfc9790cc250d516296754d12d985a1d3</originalsourceid><addsrcrecordid>eNqF0M1u1DAQwHELgehSeASQL1RwCHi8duKcEKr4kqpyAM6WY0_AKImDx6m6Nx6iT8iTkO2u6JGTL78Zj_6MPQXxCgTUr78I026rWhjxQsBLIUTbVHCPbcA0bSUbI--zzT9ywh4R_VxRbdT2ITsBaMAoqTasu0xXOJQdD1jQl5gmvlCcvvM5p7D4Qjz1nOI4D8jxesZc6M_vG8fnVHAq0Q3cZf8j7meXjLxPmePYYQgYOO2o4EiP2YPeDYRPju8p-_b-3dfzj9XF5w-fzt9eVF5JUSrtgtEo66A1AGjTe-WC9EEGbUSnoet927TCe6lF0FDLtm60CiBDa7SDsD1lZ4e96-m_FqRix0geh8FNmBayjZStVkqtUB-gz4koY2_nHEeXdxaE3ce1t3HtvpwVYG_jWljnnh0_WLoRw93UseYKnh-BI--GPrvJR7pzCoQwplndm4PDNcdVxGzJR5w8hpjXkDak-J9T_gJwcZh-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72295444</pqid></control><display><type>article</type><title>Novelty detection using products of simple experts—a potential architecture for embedded systems</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Murray, Alan F.</creator><creatorcontrib>Murray, Alan F.</creatorcontrib><description>The ‘Product of Experts’ architecture (concentrating on binary-stochastic elements) is described in the context of its suitability for implementation as mixed-mode hardware, with algorithmic modifications that render the training procedure hardware-implementable. Results show that the PoE is capable of modelling non-linear, multi-dimensional data drawn from both artificial and real sources. The capability of the PoE to perform on-line novelty detection is described and demonstrated on both artificial and real data.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(01)00097-1</identifier><identifier>PMID: 11718424</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Analogue VLSI ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Generative model ; Neural Networks (Computer) ; Nonlinear Dynamics ; Novelty detection ; Probabilistic model ; Signal Processing, Computer-Assisted ; Statistics as Topic - methods ; Stochastic Processes</subject><ispartof>Neural networks, 2001-11, Vol.14 (9), p.1257-1264</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-5ad85e26d5511158fc4ad2cd2d580b51bfc9790cc250d516296754d12d985a1d3</citedby><cites>FETCH-LOGICAL-c420t-5ad85e26d5511158fc4ad2cd2d580b51bfc9790cc250d516296754d12d985a1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0893-6080(01)00097-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14100887$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11718424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murray, Alan F.</creatorcontrib><title>Novelty detection using products of simple experts—a potential architecture for embedded systems</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>The ‘Product of Experts’ architecture (concentrating on binary-stochastic elements) is described in the context of its suitability for implementation as mixed-mode hardware, with algorithmic modifications that render the training procedure hardware-implementable. Results show that the PoE is capable of modelling non-linear, multi-dimensional data drawn from both artificial and real sources. The capability of the PoE to perform on-line novelty detection is described and demonstrated on both artificial and real data.</description><subject>Algorithms</subject><subject>Analogue VLSI</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Generative model</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><subject>Novelty detection</subject><subject>Probabilistic model</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Statistics as Topic - methods</subject><subject>Stochastic Processes</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1u1DAQwHELgehSeASQL1RwCHi8duKcEKr4kqpyAM6WY0_AKImDx6m6Nx6iT8iTkO2u6JGTL78Zj_6MPQXxCgTUr78I026rWhjxQsBLIUTbVHCPbcA0bSUbI--zzT9ywh4R_VxRbdT2ITsBaMAoqTasu0xXOJQdD1jQl5gmvlCcvvM5p7D4Qjz1nOI4D8jxesZc6M_vG8fnVHAq0Q3cZf8j7meXjLxPmePYYQgYOO2o4EiP2YPeDYRPju8p-_b-3dfzj9XF5w-fzt9eVF5JUSrtgtEo66A1AGjTe-WC9EEGbUSnoet927TCe6lF0FDLtm60CiBDa7SDsD1lZ4e96-m_FqRix0geh8FNmBayjZStVkqtUB-gz4koY2_nHEeXdxaE3ce1t3HtvpwVYG_jWljnnh0_WLoRw93UseYKnh-BI--GPrvJR7pzCoQwplndm4PDNcdVxGzJR5w8hpjXkDak-J9T_gJwcZh-</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Murray, Alan F.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011101</creationdate><title>Novelty detection using products of simple experts—a potential architecture for embedded systems</title><author>Murray, Alan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-5ad85e26d5511158fc4ad2cd2d580b51bfc9790cc250d516296754d12d985a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Analogue VLSI</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Generative model</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><topic>Novelty detection</topic><topic>Probabilistic model</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Statistics as Topic - methods</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murray, Alan F.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murray, Alan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novelty detection using products of simple experts—a potential architecture for embedded systems</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>14</volume><issue>9</issue><spage>1257</spage><epage>1264</epage><pages>1257-1264</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The ‘Product of Experts’ architecture (concentrating on binary-stochastic elements) is described in the context of its suitability for implementation as mixed-mode hardware, with algorithmic modifications that render the training procedure hardware-implementable. Results show that the PoE is capable of modelling non-linear, multi-dimensional data drawn from both artificial and real sources. The capability of the PoE to perform on-line novelty detection is described and demonstrated on both artificial and real data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11718424</pmid><doi>10.1016/S0893-6080(01)00097-1</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2001-11, Vol.14 (9), p.1257-1264 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_72295444 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Algorithms Analogue VLSI Applied sciences Artificial intelligence Computer science control theory systems Connectionism. Neural networks Exact sciences and technology Generative model Neural Networks (Computer) Nonlinear Dynamics Novelty detection Probabilistic model Signal Processing, Computer-Assisted Statistics as Topic - methods Stochastic Processes |
title | Novelty detection using products of simple experts—a potential architecture for embedded systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novelty%20detection%20using%20products%20of%20simple%20experts%E2%80%94a%20potential%20architecture%20for%20embedded%20systems&rft.jtitle=Neural%20networks&rft.au=Murray,%20Alan%20F.&rft.date=2001-11-01&rft.volume=14&rft.issue=9&rft.spage=1257&rft.epage=1264&rft.pages=1257-1264&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(01)00097-1&rft_dat=%3Cproquest_cross%3E72295444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72295444&rft_id=info:pmid/11718424&rft_els_id=S0893608001000971&rfr_iscdi=true |