Novelty detection using products of simple experts—a potential architecture for embedded systems

The ‘Product of Experts’ architecture (concentrating on binary-stochastic elements) is described in the context of its suitability for implementation as mixed-mode hardware, with algorithmic modifications that render the training procedure hardware-implementable. Results show that the PoE is capable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2001-11, Vol.14 (9), p.1257-1264
1. Verfasser: Murray, Alan F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1264
container_issue 9
container_start_page 1257
container_title Neural networks
container_volume 14
creator Murray, Alan F.
description The ‘Product of Experts’ architecture (concentrating on binary-stochastic elements) is described in the context of its suitability for implementation as mixed-mode hardware, with algorithmic modifications that render the training procedure hardware-implementable. Results show that the PoE is capable of modelling non-linear, multi-dimensional data drawn from both artificial and real sources. The capability of the PoE to perform on-line novelty detection is described and demonstrated on both artificial and real data.
doi_str_mv 10.1016/S0893-6080(01)00097-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72295444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608001000971</els_id><sourcerecordid>72295444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-5ad85e26d5511158fc4ad2cd2d580b51bfc9790cc250d516296754d12d985a1d3</originalsourceid><addsrcrecordid>eNqF0M1u1DAQwHELgehSeASQL1RwCHi8duKcEKr4kqpyAM6WY0_AKImDx6m6Nx6iT8iTkO2u6JGTL78Zj_6MPQXxCgTUr78I026rWhjxQsBLIUTbVHCPbcA0bSUbI--zzT9ywh4R_VxRbdT2ITsBaMAoqTasu0xXOJQdD1jQl5gmvlCcvvM5p7D4Qjz1nOI4D8jxesZc6M_vG8fnVHAq0Q3cZf8j7meXjLxPmePYYQgYOO2o4EiP2YPeDYRPju8p-_b-3dfzj9XF5w-fzt9eVF5JUSrtgtEo66A1AGjTe-WC9EEGbUSnoet927TCe6lF0FDLtm60CiBDa7SDsD1lZ4e96-m_FqRix0geh8FNmBayjZStVkqtUB-gz4koY2_nHEeXdxaE3ce1t3HtvpwVYG_jWljnnh0_WLoRw93UseYKnh-BI--GPrvJR7pzCoQwplndm4PDNcdVxGzJR5w8hpjXkDak-J9T_gJwcZh-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72295444</pqid></control><display><type>article</type><title>Novelty detection using products of simple experts—a potential architecture for embedded systems</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Murray, Alan F.</creator><creatorcontrib>Murray, Alan F.</creatorcontrib><description>The ‘Product of Experts’ architecture (concentrating on binary-stochastic elements) is described in the context of its suitability for implementation as mixed-mode hardware, with algorithmic modifications that render the training procedure hardware-implementable. Results show that the PoE is capable of modelling non-linear, multi-dimensional data drawn from both artificial and real sources. The capability of the PoE to perform on-line novelty detection is described and demonstrated on both artificial and real data.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/S0893-6080(01)00097-1</identifier><identifier>PMID: 11718424</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Algorithms ; Analogue VLSI ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Generative model ; Neural Networks (Computer) ; Nonlinear Dynamics ; Novelty detection ; Probabilistic model ; Signal Processing, Computer-Assisted ; Statistics as Topic - methods ; Stochastic Processes</subject><ispartof>Neural networks, 2001-11, Vol.14 (9), p.1257-1264</ispartof><rights>2001 Elsevier Science Ltd</rights><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-5ad85e26d5511158fc4ad2cd2d580b51bfc9790cc250d516296754d12d985a1d3</citedby><cites>FETCH-LOGICAL-c420t-5ad85e26d5511158fc4ad2cd2d580b51bfc9790cc250d516296754d12d985a1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0893-6080(01)00097-1$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14100887$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11718424$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Murray, Alan F.</creatorcontrib><title>Novelty detection using products of simple experts—a potential architecture for embedded systems</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>The ‘Product of Experts’ architecture (concentrating on binary-stochastic elements) is described in the context of its suitability for implementation as mixed-mode hardware, with algorithmic modifications that render the training procedure hardware-implementable. Results show that the PoE is capable of modelling non-linear, multi-dimensional data drawn from both artificial and real sources. The capability of the PoE to perform on-line novelty detection is described and demonstrated on both artificial and real data.</description><subject>Algorithms</subject><subject>Analogue VLSI</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Generative model</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><subject>Novelty detection</subject><subject>Probabilistic model</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Statistics as Topic - methods</subject><subject>Stochastic Processes</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1u1DAQwHELgehSeASQL1RwCHi8duKcEKr4kqpyAM6WY0_AKImDx6m6Nx6iT8iTkO2u6JGTL78Zj_6MPQXxCgTUr78I026rWhjxQsBLIUTbVHCPbcA0bSUbI--zzT9ywh4R_VxRbdT2ITsBaMAoqTasu0xXOJQdD1jQl5gmvlCcvvM5p7D4Qjz1nOI4D8jxesZc6M_vG8fnVHAq0Q3cZf8j7meXjLxPmePYYQgYOO2o4EiP2YPeDYRPju8p-_b-3dfzj9XF5w-fzt9eVF5JUSrtgtEo66A1AGjTe-WC9EEGbUSnoet927TCe6lF0FDLtm60CiBDa7SDsD1lZ4e96-m_FqRix0geh8FNmBayjZStVkqtUB-gz4koY2_nHEeXdxaE3ce1t3HtvpwVYG_jWljnnh0_WLoRw93UseYKnh-BI--GPrvJR7pzCoQwplndm4PDNcdVxGzJR5w8hpjXkDak-J9T_gJwcZh-</recordid><startdate>20011101</startdate><enddate>20011101</enddate><creator>Murray, Alan F.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20011101</creationdate><title>Novelty detection using products of simple experts—a potential architecture for embedded systems</title><author>Murray, Alan F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-5ad85e26d5511158fc4ad2cd2d580b51bfc9790cc250d516296754d12d985a1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Analogue VLSI</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Generative model</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><topic>Novelty detection</topic><topic>Probabilistic model</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Statistics as Topic - methods</topic><topic>Stochastic Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murray, Alan F.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murray, Alan F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novelty detection using products of simple experts—a potential architecture for embedded systems</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2001-11-01</date><risdate>2001</risdate><volume>14</volume><issue>9</issue><spage>1257</spage><epage>1264</epage><pages>1257-1264</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The ‘Product of Experts’ architecture (concentrating on binary-stochastic elements) is described in the context of its suitability for implementation as mixed-mode hardware, with algorithmic modifications that render the training procedure hardware-implementable. Results show that the PoE is capable of modelling non-linear, multi-dimensional data drawn from both artificial and real sources. The capability of the PoE to perform on-line novelty detection is described and demonstrated on both artificial and real data.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>11718424</pmid><doi>10.1016/S0893-6080(01)00097-1</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0893-6080
ispartof Neural networks, 2001-11, Vol.14 (9), p.1257-1264
issn 0893-6080
1879-2782
language eng
recordid cdi_proquest_miscellaneous_72295444
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Algorithms
Analogue VLSI
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
Generative model
Neural Networks (Computer)
Nonlinear Dynamics
Novelty detection
Probabilistic model
Signal Processing, Computer-Assisted
Statistics as Topic - methods
Stochastic Processes
title Novelty detection using products of simple experts—a potential architecture for embedded systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A02%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novelty%20detection%20using%20products%20of%20simple%20experts%E2%80%94a%20potential%20architecture%20for%20embedded%20systems&rft.jtitle=Neural%20networks&rft.au=Murray,%20Alan%20F.&rft.date=2001-11-01&rft.volume=14&rft.issue=9&rft.spage=1257&rft.epage=1264&rft.pages=1257-1264&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/S0893-6080(01)00097-1&rft_dat=%3Cproquest_cross%3E72295444%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72295444&rft_id=info:pmid/11718424&rft_els_id=S0893608001000971&rfr_iscdi=true