Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer
The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were s...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2001-11, Vol.40 (47), p.14207-14214 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14214 |
---|---|
container_issue | 47 |
container_start_page | 14207 |
container_title | Biochemistry (Easton) |
container_volume | 40 |
creator | Yang, Chii-Shen Spudich, John L |
description | The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were substituted into an engineered cysteine-less NpHtrII at 38 positions in its transmembrane domain. Oxidative disulfide cross-linking efficiencies of the monocysteine mutants were measured with or without photoactivation of NpSRII. The rapid cross-linking rates at several positions support that NpHtrII is a dimer when functionally expressed in the Halobacterium salinarum membrane. Thirteen positions in the second transmembrane segment (TM2) exhibited significant light-induced increases in cross-linking efficiency, and they define a single face traversing the length of the segment when modeled as an α-helix. Four positions in this helix showing light-induced decreases in efficiency are clustered on the cytoplasmic side of the protein. One of the monocysteine mutants, G83C, showed loss of phototaxis responses, and analysis of double mutants showed that the G83C mutation alters the dark structure of the TM2−TM2‘ region of NpHtrII. In summary, the results reveal conformationally active regions in the second transmembrane segment of NpHtrII and a face along the length of TM2 that becomes more available for TM2−TM2‘ cross-linking upon receptor photoactivation. The data also establish that one residue in TM2, Gly83, is critical for maintaining the proper conformation of NpHtrII for signal relay from the photoactivated receptor to the kinase-binding region of the transducer. |
doi_str_mv | 10.1021/bi010985c |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72286113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72286113</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-e3d74e76ddbcab444610aa247a3db71f3a845419e5445d1c4f884066232d177b3</originalsourceid><addsrcrecordid>eNqF0Utv1DAQAGALgehSOPAHKl-KxCHU4zh2cqxWwK5YaFEXrpZjO123eWz9QPDvccmqvVTiNLLn84w1g9BbIB-AUDhrHQHS1JV-hhZQUVKwpqmeowUhhBe04eQIvQrhJh8ZEewlOgIQwKhgC_Rr4653sViPJmlr8FX0ScfkVY-XOzVe24AvtE4euxHHncVbr8Yw2KHN0eKV7Z3OZOr-Jb-p6KdxapWO1rs04P1OeTWNLuBV9Ov1_Pq-kX-NXnSqD_bNIR6jH58-bperYnPxeb083xSKMR4LWxrBrODGtFq1LN8BUYoyoUrTCuhKVbOKQWMrxioDmnV1zQjntKQGhGjLY_Rurrv3012yIcrBBW37Pn9_SkEKSmsOUP4XQs1ExQVk-H6G2k8heNvJvXeD8n8kEHm_DfmwjWxPDkVTO1jzKA_jz6CYgQvR_n7IK38ruShFJbeXV_L7l5-8Ljdfpcj-dPZKB3kzJT_m4T3R-C_P_aBS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18475671</pqid></control><display><type>article</type><title>Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yang, Chii-Shen ; Spudich, John L</creator><creatorcontrib>Yang, Chii-Shen ; Spudich, John L</creatorcontrib><description>The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were substituted into an engineered cysteine-less NpHtrII at 38 positions in its transmembrane domain. Oxidative disulfide cross-linking efficiencies of the monocysteine mutants were measured with or without photoactivation of NpSRII. The rapid cross-linking rates at several positions support that NpHtrII is a dimer when functionally expressed in the Halobacterium salinarum membrane. Thirteen positions in the second transmembrane segment (TM2) exhibited significant light-induced increases in cross-linking efficiency, and they define a single face traversing the length of the segment when modeled as an α-helix. Four positions in this helix showing light-induced decreases in efficiency are clustered on the cytoplasmic side of the protein. One of the monocysteine mutants, G83C, showed loss of phototaxis responses, and analysis of double mutants showed that the G83C mutation alters the dark structure of the TM2−TM2‘ region of NpHtrII. In summary, the results reveal conformationally active regions in the second transmembrane segment of NpHtrII and a face along the length of TM2 that becomes more available for TM2−TM2‘ cross-linking upon receptor photoactivation. The data also establish that one residue in TM2, Gly83, is critical for maintaining the proper conformation of NpHtrII for signal relay from the photoactivated receptor to the kinase-binding region of the transducer.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi010985c</identifier><identifier>PMID: 11714274</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Archaeal Proteins - chemistry ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; Archaeal Proteins - radiation effects ; Carotenoids - metabolism ; Cell Polarity ; Cysteine - genetics ; Disulfides - metabolism ; Halobacterium salinarum - genetics ; Halorhodopsins ; Light Signal Transduction ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - radiation effects ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Natronobacterium - genetics ; Natronobacterium - metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins - radiation effects ; Sensory Rhodopsins</subject><ispartof>Biochemistry (Easton), 2001-11, Vol.40 (47), p.14207-14214</ispartof><rights>Copyright © 2001 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-e3d74e76ddbcab444610aa247a3db71f3a845419e5445d1c4f884066232d177b3</citedby><cites>FETCH-LOGICAL-a446t-e3d74e76ddbcab444610aa247a3db71f3a845419e5445d1c4f884066232d177b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi010985c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi010985c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11714274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Chii-Shen</creatorcontrib><creatorcontrib>Spudich, John L</creatorcontrib><title>Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were substituted into an engineered cysteine-less NpHtrII at 38 positions in its transmembrane domain. Oxidative disulfide cross-linking efficiencies of the monocysteine mutants were measured with or without photoactivation of NpSRII. The rapid cross-linking rates at several positions support that NpHtrII is a dimer when functionally expressed in the Halobacterium salinarum membrane. Thirteen positions in the second transmembrane segment (TM2) exhibited significant light-induced increases in cross-linking efficiency, and they define a single face traversing the length of the segment when modeled as an α-helix. Four positions in this helix showing light-induced decreases in efficiency are clustered on the cytoplasmic side of the protein. One of the monocysteine mutants, G83C, showed loss of phototaxis responses, and analysis of double mutants showed that the G83C mutation alters the dark structure of the TM2−TM2‘ region of NpHtrII. In summary, the results reveal conformationally active regions in the second transmembrane segment of NpHtrII and a face along the length of TM2 that becomes more available for TM2−TM2‘ cross-linking upon receptor photoactivation. The data also establish that one residue in TM2, Gly83, is critical for maintaining the proper conformation of NpHtrII for signal relay from the photoactivated receptor to the kinase-binding region of the transducer.</description><subject>Amino Acid Sequence</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>Archaeal Proteins - radiation effects</subject><subject>Carotenoids - metabolism</subject><subject>Cell Polarity</subject><subject>Cysteine - genetics</subject><subject>Disulfides - metabolism</subject><subject>Halobacterium salinarum - genetics</subject><subject>Halorhodopsins</subject><subject>Light Signal Transduction</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - radiation effects</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Natronobacterium - genetics</subject><subject>Natronobacterium - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - radiation effects</subject><subject>Sensory Rhodopsins</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Utv1DAQAGALgehSOPAHKl-KxCHU4zh2cqxWwK5YaFEXrpZjO123eWz9QPDvccmqvVTiNLLn84w1g9BbIB-AUDhrHQHS1JV-hhZQUVKwpqmeowUhhBe04eQIvQrhJh8ZEewlOgIQwKhgC_Rr4653sViPJmlr8FX0ScfkVY-XOzVe24AvtE4euxHHncVbr8Yw2KHN0eKV7Z3OZOr-Jb-p6KdxapWO1rs04P1OeTWNLuBV9Ov1_Pq-kX-NXnSqD_bNIR6jH58-bperYnPxeb083xSKMR4LWxrBrODGtFq1LN8BUYoyoUrTCuhKVbOKQWMrxioDmnV1zQjntKQGhGjLY_Rurrv3012yIcrBBW37Pn9_SkEKSmsOUP4XQs1ExQVk-H6G2k8heNvJvXeD8n8kEHm_DfmwjWxPDkVTO1jzKA_jz6CYgQvR_n7IK38ruShFJbeXV_L7l5-8Ljdfpcj-dPZKB3kzJT_m4T3R-C_P_aBS</recordid><startdate>20011127</startdate><enddate>20011127</enddate><creator>Yang, Chii-Shen</creator><creator>Spudich, John L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20011127</creationdate><title>Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer</title><author>Yang, Chii-Shen ; Spudich, John L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-e3d74e76ddbcab444610aa247a3db71f3a845419e5445d1c4f884066232d177b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino Acid Sequence</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>Archaeal Proteins - radiation effects</topic><topic>Carotenoids - metabolism</topic><topic>Cell Polarity</topic><topic>Cysteine - genetics</topic><topic>Disulfides - metabolism</topic><topic>Halobacterium salinarum - genetics</topic><topic>Halorhodopsins</topic><topic>Light Signal Transduction</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - radiation effects</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Natronobacterium - genetics</topic><topic>Natronobacterium - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - radiation effects</topic><topic>Sensory Rhodopsins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chii-Shen</creatorcontrib><creatorcontrib>Spudich, John L</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chii-Shen</au><au>Spudich, John L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2001-11-27</date><risdate>2001</risdate><volume>40</volume><issue>47</issue><spage>14207</spage><epage>14214</epage><pages>14207-14214</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were substituted into an engineered cysteine-less NpHtrII at 38 positions in its transmembrane domain. Oxidative disulfide cross-linking efficiencies of the monocysteine mutants were measured with or without photoactivation of NpSRII. The rapid cross-linking rates at several positions support that NpHtrII is a dimer when functionally expressed in the Halobacterium salinarum membrane. Thirteen positions in the second transmembrane segment (TM2) exhibited significant light-induced increases in cross-linking efficiency, and they define a single face traversing the length of the segment when modeled as an α-helix. Four positions in this helix showing light-induced decreases in efficiency are clustered on the cytoplasmic side of the protein. One of the monocysteine mutants, G83C, showed loss of phototaxis responses, and analysis of double mutants showed that the G83C mutation alters the dark structure of the TM2−TM2‘ region of NpHtrII. In summary, the results reveal conformationally active regions in the second transmembrane segment of NpHtrII and a face along the length of TM2 that becomes more available for TM2−TM2‘ cross-linking upon receptor photoactivation. The data also establish that one residue in TM2, Gly83, is critical for maintaining the proper conformation of NpHtrII for signal relay from the photoactivated receptor to the kinase-binding region of the transducer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>11714274</pmid><doi>10.1021/bi010985c</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2001-11, Vol.40 (47), p.14207-14214 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_72286113 |
source | MEDLINE; American Chemical Society Journals |
subjects | Amino Acid Sequence Archaeal Proteins - chemistry Archaeal Proteins - genetics Archaeal Proteins - metabolism Archaeal Proteins - radiation effects Carotenoids - metabolism Cell Polarity Cysteine - genetics Disulfides - metabolism Halobacterium salinarum - genetics Halorhodopsins Light Signal Transduction Membrane Proteins - chemistry Membrane Proteins - genetics Membrane Proteins - radiation effects Models, Molecular Molecular Sequence Data Mutation Natronobacterium - genetics Natronobacterium - metabolism Protein Structure, Secondary Protein Structure, Tertiary Recombinant Proteins - radiation effects Sensory Rhodopsins |
title | Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-Induced%20Structural%20Changes%20Occur%20in%20the%20Transmembrane%20Helices%20of%20the%20Natronobacterium%20pharaonis%20HtrII%20Transducer&rft.jtitle=Biochemistry%20(Easton)&rft.au=Yang,%20Chii-Shen&rft.date=2001-11-27&rft.volume=40&rft.issue=47&rft.spage=14207&rft.epage=14214&rft.pages=14207-14214&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi010985c&rft_dat=%3Cproquest_cross%3E72286113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18475671&rft_id=info:pmid/11714274&rfr_iscdi=true |