Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer

The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2001-11, Vol.40 (47), p.14207-14214
Hauptverfasser: Yang, Chii-Shen, Spudich, John L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14214
container_issue 47
container_start_page 14207
container_title Biochemistry (Easton)
container_volume 40
creator Yang, Chii-Shen
Spudich, John L
description The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were substituted into an engineered cysteine-less NpHtrII at 38 positions in its transmembrane domain. Oxidative disulfide cross-linking efficiencies of the monocysteine mutants were measured with or without photoactivation of NpSRII. The rapid cross-linking rates at several positions support that NpHtrII is a dimer when functionally expressed in the Halobacterium salinarum membrane. Thirteen positions in the second transmembrane segment (TM2) exhibited significant light-induced increases in cross-linking efficiency, and they define a single face traversing the length of the segment when modeled as an α-helix. Four positions in this helix showing light-induced decreases in efficiency are clustered on the cytoplasmic side of the protein. One of the monocysteine mutants, G83C, showed loss of phototaxis responses, and analysis of double mutants showed that the G83C mutation alters the dark structure of the TM2−TM2‘ region of NpHtrII. In summary, the results reveal conformationally active regions in the second transmembrane segment of NpHtrII and a face along the length of TM2 that becomes more available for TM2−TM2‘ cross-linking upon receptor photoactivation. The data also establish that one residue in TM2, Gly83, is critical for maintaining the proper conformation of NpHtrII for signal relay from the photoactivated receptor to the kinase-binding region of the transducer.
doi_str_mv 10.1021/bi010985c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72286113</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72286113</sourcerecordid><originalsourceid>FETCH-LOGICAL-a446t-e3d74e76ddbcab444610aa247a3db71f3a845419e5445d1c4f884066232d177b3</originalsourceid><addsrcrecordid>eNqF0Utv1DAQAGALgehSOPAHKl-KxCHU4zh2cqxWwK5YaFEXrpZjO123eWz9QPDvccmqvVTiNLLn84w1g9BbIB-AUDhrHQHS1JV-hhZQUVKwpqmeowUhhBe04eQIvQrhJh8ZEewlOgIQwKhgC_Rr4653sViPJmlr8FX0ScfkVY-XOzVe24AvtE4euxHHncVbr8Yw2KHN0eKV7Z3OZOr-Jb-p6KdxapWO1rs04P1OeTWNLuBV9Ov1_Pq-kX-NXnSqD_bNIR6jH58-bperYnPxeb083xSKMR4LWxrBrODGtFq1LN8BUYoyoUrTCuhKVbOKQWMrxioDmnV1zQjntKQGhGjLY_Rurrv3012yIcrBBW37Pn9_SkEKSmsOUP4XQs1ExQVk-H6G2k8heNvJvXeD8n8kEHm_DfmwjWxPDkVTO1jzKA_jz6CYgQvR_n7IK38ruShFJbeXV_L7l5-8Ljdfpcj-dPZKB3kzJT_m4T3R-C_P_aBS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18475671</pqid></control><display><type>article</type><title>Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Yang, Chii-Shen ; Spudich, John L</creator><creatorcontrib>Yang, Chii-Shen ; Spudich, John L</creatorcontrib><description>The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were substituted into an engineered cysteine-less NpHtrII at 38 positions in its transmembrane domain. Oxidative disulfide cross-linking efficiencies of the monocysteine mutants were measured with or without photoactivation of NpSRII. The rapid cross-linking rates at several positions support that NpHtrII is a dimer when functionally expressed in the Halobacterium salinarum membrane. Thirteen positions in the second transmembrane segment (TM2) exhibited significant light-induced increases in cross-linking efficiency, and they define a single face traversing the length of the segment when modeled as an α-helix. Four positions in this helix showing light-induced decreases in efficiency are clustered on the cytoplasmic side of the protein. One of the monocysteine mutants, G83C, showed loss of phototaxis responses, and analysis of double mutants showed that the G83C mutation alters the dark structure of the TM2−TM2‘ region of NpHtrII. In summary, the results reveal conformationally active regions in the second transmembrane segment of NpHtrII and a face along the length of TM2 that becomes more available for TM2−TM2‘ cross-linking upon receptor photoactivation. The data also establish that one residue in TM2, Gly83, is critical for maintaining the proper conformation of NpHtrII for signal relay from the photoactivated receptor to the kinase-binding region of the transducer.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi010985c</identifier><identifier>PMID: 11714274</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acid Sequence ; Archaeal Proteins - chemistry ; Archaeal Proteins - genetics ; Archaeal Proteins - metabolism ; Archaeal Proteins - radiation effects ; Carotenoids - metabolism ; Cell Polarity ; Cysteine - genetics ; Disulfides - metabolism ; Halobacterium salinarum - genetics ; Halorhodopsins ; Light Signal Transduction ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - radiation effects ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Natronobacterium - genetics ; Natronobacterium - metabolism ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Recombinant Proteins - radiation effects ; Sensory Rhodopsins</subject><ispartof>Biochemistry (Easton), 2001-11, Vol.40 (47), p.14207-14214</ispartof><rights>Copyright © 2001 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a446t-e3d74e76ddbcab444610aa247a3db71f3a845419e5445d1c4f884066232d177b3</citedby><cites>FETCH-LOGICAL-a446t-e3d74e76ddbcab444610aa247a3db71f3a845419e5445d1c4f884066232d177b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi010985c$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi010985c$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11714274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Chii-Shen</creatorcontrib><creatorcontrib>Spudich, John L</creatorcontrib><title>Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were substituted into an engineered cysteine-less NpHtrII at 38 positions in its transmembrane domain. Oxidative disulfide cross-linking efficiencies of the monocysteine mutants were measured with or without photoactivation of NpSRII. The rapid cross-linking rates at several positions support that NpHtrII is a dimer when functionally expressed in the Halobacterium salinarum membrane. Thirteen positions in the second transmembrane segment (TM2) exhibited significant light-induced increases in cross-linking efficiency, and they define a single face traversing the length of the segment when modeled as an α-helix. Four positions in this helix showing light-induced decreases in efficiency are clustered on the cytoplasmic side of the protein. One of the monocysteine mutants, G83C, showed loss of phototaxis responses, and analysis of double mutants showed that the G83C mutation alters the dark structure of the TM2−TM2‘ region of NpHtrII. In summary, the results reveal conformationally active regions in the second transmembrane segment of NpHtrII and a face along the length of TM2 that becomes more available for TM2−TM2‘ cross-linking upon receptor photoactivation. The data also establish that one residue in TM2, Gly83, is critical for maintaining the proper conformation of NpHtrII for signal relay from the photoactivated receptor to the kinase-binding region of the transducer.</description><subject>Amino Acid Sequence</subject><subject>Archaeal Proteins - chemistry</subject><subject>Archaeal Proteins - genetics</subject><subject>Archaeal Proteins - metabolism</subject><subject>Archaeal Proteins - radiation effects</subject><subject>Carotenoids - metabolism</subject><subject>Cell Polarity</subject><subject>Cysteine - genetics</subject><subject>Disulfides - metabolism</subject><subject>Halobacterium salinarum - genetics</subject><subject>Halorhodopsins</subject><subject>Light Signal Transduction</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - radiation effects</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Natronobacterium - genetics</subject><subject>Natronobacterium - metabolism</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - radiation effects</subject><subject>Sensory Rhodopsins</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0Utv1DAQAGALgehSOPAHKl-KxCHU4zh2cqxWwK5YaFEXrpZjO123eWz9QPDvccmqvVTiNLLn84w1g9BbIB-AUDhrHQHS1JV-hhZQUVKwpqmeowUhhBe04eQIvQrhJh8ZEewlOgIQwKhgC_Rr4653sViPJmlr8FX0ScfkVY-XOzVe24AvtE4euxHHncVbr8Yw2KHN0eKV7Z3OZOr-Jb-p6KdxapWO1rs04P1OeTWNLuBV9Ov1_Pq-kX-NXnSqD_bNIR6jH58-bperYnPxeb083xSKMR4LWxrBrODGtFq1LN8BUYoyoUrTCuhKVbOKQWMrxioDmnV1zQjntKQGhGjLY_Rurrv3012yIcrBBW37Pn9_SkEKSmsOUP4XQs1ExQVk-H6G2k8heNvJvXeD8n8kEHm_DfmwjWxPDkVTO1jzKA_jz6CYgQvR_n7IK38ruShFJbeXV_L7l5-8Ljdfpcj-dPZKB3kzJT_m4T3R-C_P_aBS</recordid><startdate>20011127</startdate><enddate>20011127</enddate><creator>Yang, Chii-Shen</creator><creator>Spudich, John L</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20011127</creationdate><title>Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer</title><author>Yang, Chii-Shen ; Spudich, John L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a446t-e3d74e76ddbcab444610aa247a3db71f3a845419e5445d1c4f884066232d177b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino Acid Sequence</topic><topic>Archaeal Proteins - chemistry</topic><topic>Archaeal Proteins - genetics</topic><topic>Archaeal Proteins - metabolism</topic><topic>Archaeal Proteins - radiation effects</topic><topic>Carotenoids - metabolism</topic><topic>Cell Polarity</topic><topic>Cysteine - genetics</topic><topic>Disulfides - metabolism</topic><topic>Halobacterium salinarum - genetics</topic><topic>Halorhodopsins</topic><topic>Light Signal Transduction</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - radiation effects</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Natronobacterium - genetics</topic><topic>Natronobacterium - metabolism</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - radiation effects</topic><topic>Sensory Rhodopsins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chii-Shen</creatorcontrib><creatorcontrib>Spudich, John L</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chii-Shen</au><au>Spudich, John L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2001-11-27</date><risdate>2001</risdate><volume>40</volume><issue>47</issue><spage>14207</spage><epage>14214</epage><pages>14207-14214</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>The Natronobacterium pharaonis HtrII (NpHtrII) transducer interacts with its cognate photoactive sensory rhodopsin receptor, NpSRII, to mediate phototaxis responses. NpHtrII is predicted to have two transmembrane helices and a large cytoplasmic domain and to form a homodimer. Single cysteines were substituted into an engineered cysteine-less NpHtrII at 38 positions in its transmembrane domain. Oxidative disulfide cross-linking efficiencies of the monocysteine mutants were measured with or without photoactivation of NpSRII. The rapid cross-linking rates at several positions support that NpHtrII is a dimer when functionally expressed in the Halobacterium salinarum membrane. Thirteen positions in the second transmembrane segment (TM2) exhibited significant light-induced increases in cross-linking efficiency, and they define a single face traversing the length of the segment when modeled as an α-helix. Four positions in this helix showing light-induced decreases in efficiency are clustered on the cytoplasmic side of the protein. One of the monocysteine mutants, G83C, showed loss of phototaxis responses, and analysis of double mutants showed that the G83C mutation alters the dark structure of the TM2−TM2‘ region of NpHtrII. In summary, the results reveal conformationally active regions in the second transmembrane segment of NpHtrII and a face along the length of TM2 that becomes more available for TM2−TM2‘ cross-linking upon receptor photoactivation. The data also establish that one residue in TM2, Gly83, is critical for maintaining the proper conformation of NpHtrII for signal relay from the photoactivated receptor to the kinase-binding region of the transducer.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>11714274</pmid><doi>10.1021/bi010985c</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2001-11, Vol.40 (47), p.14207-14214
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_72286113
source MEDLINE; American Chemical Society Journals
subjects Amino Acid Sequence
Archaeal Proteins - chemistry
Archaeal Proteins - genetics
Archaeal Proteins - metabolism
Archaeal Proteins - radiation effects
Carotenoids - metabolism
Cell Polarity
Cysteine - genetics
Disulfides - metabolism
Halobacterium salinarum - genetics
Halorhodopsins
Light Signal Transduction
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - radiation effects
Models, Molecular
Molecular Sequence Data
Mutation
Natronobacterium - genetics
Natronobacterium - metabolism
Protein Structure, Secondary
Protein Structure, Tertiary
Recombinant Proteins - radiation effects
Sensory Rhodopsins
title Light-Induced Structural Changes Occur in the Transmembrane Helices of the Natronobacterium pharaonis HtrII Transducer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A49%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Light-Induced%20Structural%20Changes%20Occur%20in%20the%20Transmembrane%20Helices%20of%20the%20Natronobacterium%20pharaonis%20HtrII%20Transducer&rft.jtitle=Biochemistry%20(Easton)&rft.au=Yang,%20Chii-Shen&rft.date=2001-11-27&rft.volume=40&rft.issue=47&rft.spage=14207&rft.epage=14214&rft.pages=14207-14214&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi010985c&rft_dat=%3Cproquest_cross%3E72286113%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18475671&rft_id=info:pmid/11714274&rfr_iscdi=true