Folding Mechanism of the Tetrahymena Ribozyme P4−P6 Domain
Synchrotron X-ray-dependent hydroxyl radical footprinting was used to probe the folding kinetics of the P4−P6 domain of the Tetrahymena group I ribozyme, which forms a stable, closely packed tertiary structure. The 160-nt domain folds independently at a similar rate (∼2 s-1) as it does in the ribozy...
Gespeichert in:
Veröffentlicht in: | Biochemistry 2000-09, Vol.39 (36), p.10975-10985 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10985 |
---|---|
container_issue | 36 |
container_start_page | 10975 |
container_title | Biochemistry |
container_volume | 39 |
creator | Deras, Michael L Brenowitz, Michael Ralston, Corie Y Chance, Mark R Woodson, Sarah A |
description | Synchrotron X-ray-dependent hydroxyl radical footprinting was used to probe the folding kinetics of the P4−P6 domain of the Tetrahymena group I ribozyme, which forms a stable, closely packed tertiary structure. The 160-nt domain folds independently at a similar rate (∼2 s-1) as it does in the ribozyme, when folding is measured in 10 mM sodium cacodylate and 10 mM MgCl2. Surprisingly, tertiary interactions around a three-helix junction (P5abc) within the P4−P6 domain fold at least 25 times more rapidly (k ≥ 50 s-1) in isolation, than when part of the wild-type P4−P6 RNA. This difference implies that long-range interactions in the P4−P6 domain can interfere with folding of P5abc. P4−P6 was observed to fold much faster at higher ionic strength than in 10 mM sodium cacodylate. Analytical centrifugation was used to measure the sedimentation and diffusion coefficients of the unfolded RNA. The hydrodynamic radius of the RNA decreased from 58 to 46 Å over the range of 0−100 mM NaCl. We propose that at low ionic strength, the addition of Mg2+ causes the domain to collapse to a compact intermediate where P5abc is trapped in a non-native structure. At high ionic strength, the RNA rapidly collapses to the native structure. Faster folding most likely results from a different average initial conformation of the RNA in higher salt conditions. |
doi_str_mv | 10.1021/bi0010118 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_72279490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72279490</sourcerecordid><originalsourceid>FETCH-LOGICAL-a472t-3e9fc171596186d4b259d8533054c3672fc15d5d2fe547e5648a35c7008bedee3</originalsourceid><addsrcrecordid>eNqF0M1O3DAUBWCroirDtAteAIVFkbpIe-34J5bYIAbaSgOM2qnUneU4N4xhEtM4I0GfoOs-Yp-kboMQCyRWtnU_HV8dQnYpvKfA6IfKA1CgtHxBJlQwyLnWYotMAEDmTEvYJjsxXqUnB8VfkW0KWpes4BNyeBrWte8uszN0K9v52GahyYYVZksceru6a7Gz2RdfhZ_pmi34n1-_FzKbhdb67jV52dh1xDf355R8Oz1ZHn_K5xcfPx8fzXPLFRvyAnXjqKJCS1rKmldM6LoURQGCu0IqlqaiFjVrUHCFQvLSFsIpgLLCGrGYkv0xN8TBm-j8kJZ1oevQDUZpyVLYlByM5qYPPzYYB9P66HC9th2GTTSKMaW5hmchVYoB-w_fjdD1IcYeG3PT-9b2d4aC-de7eeg92b370E3VYv1IjkUnkI_AxwFvH-a2vzZSFUqY5eKrmekFP_8-nxmW_NvRWxfNVdj0XSr4iY__AqX4lX4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17720290</pqid></control><display><type>article</type><title>Folding Mechanism of the Tetrahymena Ribozyme P4−P6 Domain</title><source>ACS Publications</source><source>MEDLINE</source><creator>Deras, Michael L ; Brenowitz, Michael ; Ralston, Corie Y ; Chance, Mark R ; Woodson, Sarah A</creator><creatorcontrib>Deras, Michael L ; Brenowitz, Michael ; Ralston, Corie Y ; Chance, Mark R ; Woodson, Sarah A ; Brookhaven National Lab., Upton, NY (US) ; National Synchrotron Light Source (US)</creatorcontrib><description>Synchrotron X-ray-dependent hydroxyl radical footprinting was used to probe the folding kinetics of the P4−P6 domain of the Tetrahymena group I ribozyme, which forms a stable, closely packed tertiary structure. The 160-nt domain folds independently at a similar rate (∼2 s-1) as it does in the ribozyme, when folding is measured in 10 mM sodium cacodylate and 10 mM MgCl2. Surprisingly, tertiary interactions around a three-helix junction (P5abc) within the P4−P6 domain fold at least 25 times more rapidly (k ≥ 50 s-1) in isolation, than when part of the wild-type P4−P6 RNA. This difference implies that long-range interactions in the P4−P6 domain can interfere with folding of P5abc. P4−P6 was observed to fold much faster at higher ionic strength than in 10 mM sodium cacodylate. Analytical centrifugation was used to measure the sedimentation and diffusion coefficients of the unfolded RNA. The hydrodynamic radius of the RNA decreased from 58 to 46 Å over the range of 0−100 mM NaCl. We propose that at low ionic strength, the addition of Mg2+ causes the domain to collapse to a compact intermediate where P5abc is trapped in a non-native structure. At high ionic strength, the RNA rapidly collapses to the native structure. Faster folding most likely results from a different average initial conformation of the RNA in higher salt conditions.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi0010118</identifier><identifier>PMID: 10998234</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Base Sequence ; BASIC BIOLOGICAL SCIENCES ; BIOCHEMISTRY ; Hydroxyl Radical - chemistry ; Molecular Sequence Data ; Mutation ; NATIONAL SYNCHROTRON LIGHT SOURCE ; NSLS ; Nucleic Acid Conformation ; Osmolar Concentration ; RNA, Catalytic - chemistry ; RNA, Catalytic - genetics ; RNA, Protozoan - chemistry ; RNA, Protozoan - genetics ; Synchrotrons ; TETRAHYMENA ; Tetrahymena - enzymology ; Tetrahymena - genetics ; Thermodynamics ; Ultracentrifugation ; X-Rays</subject><ispartof>Biochemistry, 2000-09, Vol.39 (36), p.10975-10985</ispartof><rights>Copyright © 2000 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a472t-3e9fc171596186d4b259d8533054c3672fc15d5d2fe547e5648a35c7008bedee3</citedby><cites>FETCH-LOGICAL-a472t-3e9fc171596186d4b259d8533054c3672fc15d5d2fe547e5648a35c7008bedee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi0010118$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi0010118$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10998234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/796285$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Deras, Michael L</creatorcontrib><creatorcontrib>Brenowitz, Michael</creatorcontrib><creatorcontrib>Ralston, Corie Y</creatorcontrib><creatorcontrib>Chance, Mark R</creatorcontrib><creatorcontrib>Woodson, Sarah A</creatorcontrib><creatorcontrib>Brookhaven National Lab., Upton, NY (US)</creatorcontrib><creatorcontrib>National Synchrotron Light Source (US)</creatorcontrib><title>Folding Mechanism of the Tetrahymena Ribozyme P4−P6 Domain</title><title>Biochemistry</title><addtitle>Biochemistry</addtitle><description>Synchrotron X-ray-dependent hydroxyl radical footprinting was used to probe the folding kinetics of the P4−P6 domain of the Tetrahymena group I ribozyme, which forms a stable, closely packed tertiary structure. The 160-nt domain folds independently at a similar rate (∼2 s-1) as it does in the ribozyme, when folding is measured in 10 mM sodium cacodylate and 10 mM MgCl2. Surprisingly, tertiary interactions around a three-helix junction (P5abc) within the P4−P6 domain fold at least 25 times more rapidly (k ≥ 50 s-1) in isolation, than when part of the wild-type P4−P6 RNA. This difference implies that long-range interactions in the P4−P6 domain can interfere with folding of P5abc. P4−P6 was observed to fold much faster at higher ionic strength than in 10 mM sodium cacodylate. Analytical centrifugation was used to measure the sedimentation and diffusion coefficients of the unfolded RNA. The hydrodynamic radius of the RNA decreased from 58 to 46 Å over the range of 0−100 mM NaCl. We propose that at low ionic strength, the addition of Mg2+ causes the domain to collapse to a compact intermediate where P5abc is trapped in a non-native structure. At high ionic strength, the RNA rapidly collapses to the native structure. Faster folding most likely results from a different average initial conformation of the RNA in higher salt conditions.</description><subject>Animals</subject><subject>Base Sequence</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>BIOCHEMISTRY</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>NATIONAL SYNCHROTRON LIGHT SOURCE</subject><subject>NSLS</subject><subject>Nucleic Acid Conformation</subject><subject>Osmolar Concentration</subject><subject>RNA, Catalytic - chemistry</subject><subject>RNA, Catalytic - genetics</subject><subject>RNA, Protozoan - chemistry</subject><subject>RNA, Protozoan - genetics</subject><subject>Synchrotrons</subject><subject>TETRAHYMENA</subject><subject>Tetrahymena - enzymology</subject><subject>Tetrahymena - genetics</subject><subject>Thermodynamics</subject><subject>Ultracentrifugation</subject><subject>X-Rays</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0M1O3DAUBWCroirDtAteAIVFkbpIe-34J5bYIAbaSgOM2qnUneU4N4xhEtM4I0GfoOs-Yp-kboMQCyRWtnU_HV8dQnYpvKfA6IfKA1CgtHxBJlQwyLnWYotMAEDmTEvYJjsxXqUnB8VfkW0KWpes4BNyeBrWte8uszN0K9v52GahyYYVZksceru6a7Gz2RdfhZ_pmi34n1-_FzKbhdb67jV52dh1xDf355R8Oz1ZHn_K5xcfPx8fzXPLFRvyAnXjqKJCS1rKmldM6LoURQGCu0IqlqaiFjVrUHCFQvLSFsIpgLLCGrGYkv0xN8TBm-j8kJZ1oevQDUZpyVLYlByM5qYPPzYYB9P66HC9th2GTTSKMaW5hmchVYoB-w_fjdD1IcYeG3PT-9b2d4aC-de7eeg92b370E3VYv1IjkUnkI_AxwFvH-a2vzZSFUqY5eKrmekFP_8-nxmW_NvRWxfNVdj0XSr4iY__AqX4lX4</recordid><startdate>20000912</startdate><enddate>20000912</enddate><creator>Deras, Michael L</creator><creator>Brenowitz, Michael</creator><creator>Ralston, Corie Y</creator><creator>Chance, Mark R</creator><creator>Woodson, Sarah A</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>M7N</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20000912</creationdate><title>Folding Mechanism of the Tetrahymena Ribozyme P4−P6 Domain</title><author>Deras, Michael L ; Brenowitz, Michael ; Ralston, Corie Y ; Chance, Mark R ; Woodson, Sarah A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a472t-3e9fc171596186d4b259d8533054c3672fc15d5d2fe547e5648a35c7008bedee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Animals</topic><topic>Base Sequence</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>BIOCHEMISTRY</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>NATIONAL SYNCHROTRON LIGHT SOURCE</topic><topic>NSLS</topic><topic>Nucleic Acid Conformation</topic><topic>Osmolar Concentration</topic><topic>RNA, Catalytic - chemistry</topic><topic>RNA, Catalytic - genetics</topic><topic>RNA, Protozoan - chemistry</topic><topic>RNA, Protozoan - genetics</topic><topic>Synchrotrons</topic><topic>TETRAHYMENA</topic><topic>Tetrahymena - enzymology</topic><topic>Tetrahymena - genetics</topic><topic>Thermodynamics</topic><topic>Ultracentrifugation</topic><topic>X-Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deras, Michael L</creatorcontrib><creatorcontrib>Brenowitz, Michael</creatorcontrib><creatorcontrib>Ralston, Corie Y</creatorcontrib><creatorcontrib>Chance, Mark R</creatorcontrib><creatorcontrib>Woodson, Sarah A</creatorcontrib><creatorcontrib>Brookhaven National Lab., Upton, NY (US)</creatorcontrib><creatorcontrib>National Synchrotron Light Source (US)</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deras, Michael L</au><au>Brenowitz, Michael</au><au>Ralston, Corie Y</au><au>Chance, Mark R</au><au>Woodson, Sarah A</au><aucorp>Brookhaven National Lab., Upton, NY (US)</aucorp><aucorp>National Synchrotron Light Source (US)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Folding Mechanism of the Tetrahymena Ribozyme P4−P6 Domain</atitle><jtitle>Biochemistry</jtitle><addtitle>Biochemistry</addtitle><date>2000-09-12</date><risdate>2000</risdate><volume>39</volume><issue>36</issue><spage>10975</spage><epage>10985</epage><pages>10975-10985</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Synchrotron X-ray-dependent hydroxyl radical footprinting was used to probe the folding kinetics of the P4−P6 domain of the Tetrahymena group I ribozyme, which forms a stable, closely packed tertiary structure. The 160-nt domain folds independently at a similar rate (∼2 s-1) as it does in the ribozyme, when folding is measured in 10 mM sodium cacodylate and 10 mM MgCl2. Surprisingly, tertiary interactions around a three-helix junction (P5abc) within the P4−P6 domain fold at least 25 times more rapidly (k ≥ 50 s-1) in isolation, than when part of the wild-type P4−P6 RNA. This difference implies that long-range interactions in the P4−P6 domain can interfere with folding of P5abc. P4−P6 was observed to fold much faster at higher ionic strength than in 10 mM sodium cacodylate. Analytical centrifugation was used to measure the sedimentation and diffusion coefficients of the unfolded RNA. The hydrodynamic radius of the RNA decreased from 58 to 46 Å over the range of 0−100 mM NaCl. We propose that at low ionic strength, the addition of Mg2+ causes the domain to collapse to a compact intermediate where P5abc is trapped in a non-native structure. At high ionic strength, the RNA rapidly collapses to the native structure. Faster folding most likely results from a different average initial conformation of the RNA in higher salt conditions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>10998234</pmid><doi>10.1021/bi0010118</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry, 2000-09, Vol.39 (36), p.10975-10985 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_72279490 |
source | ACS Publications; MEDLINE |
subjects | Animals Base Sequence BASIC BIOLOGICAL SCIENCES BIOCHEMISTRY Hydroxyl Radical - chemistry Molecular Sequence Data Mutation NATIONAL SYNCHROTRON LIGHT SOURCE NSLS Nucleic Acid Conformation Osmolar Concentration RNA, Catalytic - chemistry RNA, Catalytic - genetics RNA, Protozoan - chemistry RNA, Protozoan - genetics Synchrotrons TETRAHYMENA Tetrahymena - enzymology Tetrahymena - genetics Thermodynamics Ultracentrifugation X-Rays |
title | Folding Mechanism of the Tetrahymena Ribozyme P4−P6 Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T20%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Folding%20Mechanism%20of%20the%20Tetrahymena%20Ribozyme%20P4%E2%88%92P6%20Domain&rft.jtitle=Biochemistry&rft.au=Deras,%20Michael%20L&rft.aucorp=Brookhaven%20National%20Lab.,%20Upton,%20NY%20(US)&rft.date=2000-09-12&rft.volume=39&rft.issue=36&rft.spage=10975&rft.epage=10985&rft.pages=10975-10985&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi0010118&rft_dat=%3Cproquest_osti_%3E72279490%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17720290&rft_id=info:pmid/10998234&rfr_iscdi=true |