Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices
The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2001-10, Vol.22 (18), p.3930-3938 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3938 |
---|---|
container_issue | 18 |
container_start_page | 3930 |
container_title | Electrophoresis |
container_volume | 22 |
creator | Mogensen, Klaus B. Petersen, Nickolaj J. Hübner, Jörg Kutter, Jörg P. |
description | The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free‐space optics. A 750 νm long U‐shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U‐cell, tapering of the separation channel from a width of 120 down to 30 νm was employed. Electrical insulation was achieved by a 13 νm thermally grown silicon dioxide between the silicon substrate and the channels. The breakdown voltage during operation of the chip was measured to 10.6 kV. A separation of 3.2 νM rhodamine 110, 8 νM 2,7‐dichlorofluorescein, 10 νM fluorescein and 18 νM 5‐carboxyfluorescein was demonstrated on the device using the detection cell for absorption measurements at 488 nm. |
doi_str_mv | 10.1002/1522-2683(200110)22:18<3930::AID-ELPS3930>3.0.CO;2-Q |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72269603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72269603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4700-7fc9c9d71feddbb76d8c521cbd25c448877910fc8f7ba39e50cfe31eaa0b09993</originalsourceid><addsrcrecordid>eNqVkUFvEzEQhVcIRNPCX0B7QnDYMLZ343WokEpoS6WUNKIIwWXk9c62Lpt1am9a-u9xSAgnDpys8XzzZvRekhwyGDIA_oYVnGd8VIpXHIAxeM35mJWHQgkYj4_OPmTH04vP6-qdGMJwMnvLs_mjZLAbe5wMgEmRQSmKvWQ_hBsAyFWeP032GJMAkotBsjx3nWttf21NaruerrzuretS16Ru2Vuj2_Re39HVytYU0sb5VFfB-Up3htKaejK_cdulC2u8a3Tl41BPdUpt7Hm3vHaegg0RvrOGwrPkSaPbQM-370Hy5eT4cvIxm85OzyZH08zk8bZMNkYZVUvWUF1XlRzVpSk4M1XNC5PnZSmlYtCYspGVFooKMA0JRlpDBUopcZC83OguvbtdUehxYYOhttUduVVAyflIjUBE8HIDxvND8NTg0tuF9g_IANdJ4NpSXFuKmyQwlqzEtfeIMQn8kwQKBJzMkOM8yr7Y7l9VC6r_im6tj8C3DXBvW3r4r6X_2Ln7i9rZRtuGnn7utLX_gSMpZIFfP50iOz-Zv__OLlCJX1JEtaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72269603</pqid></control><display><type>article</type><title>Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mogensen, Klaus B. ; Petersen, Nickolaj J. ; Hübner, Jörg ; Kutter, Jörg P.</creator><creatorcontrib>Mogensen, Klaus B. ; Petersen, Nickolaj J. ; Hübner, Jörg ; Kutter, Jörg P.</creatorcontrib><description>The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free‐space optics. A 750 νm long U‐shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U‐cell, tapering of the separation channel from a width of 120 down to 30 νm was employed. Electrical insulation was achieved by a 13 νm thermally grown silicon dioxide between the silicon substrate and the channels. The breakdown voltage during operation of the chip was measured to 10.6 kV. A separation of 3.2 νM rhodamine 110, 8 νM 2,7‐dichlorofluorescein, 10 νM fluorescein and 18 νM 5‐carboxyfluorescein was demonstrated on the device using the detection cell for absorption measurements at 488 nm.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/1522-2683(200110)22:18<3930::AID-ELPS3930>3.0.CO;2-Q</identifier><identifier>PMID: 11700723</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Absorption detection ; Capillary electrophoresis ; Electrophoresis, Capillary - instrumentation ; Equipment Design ; Feasibility Studies ; Fluorescein - analysis ; Fluoresceins - analysis ; Fluorescent Dyes - analysis ; Fluorometry - instrumentation ; Glass ; Insulated channels ; Microchemistry - instrumentation ; Micrototal analysis systems ; Rhodamines - analysis ; Silicon ; Waveguides</subject><ispartof>Electrophoresis, 2001-10, Vol.22 (18), p.3930-3938</ispartof><rights>Copyright © 2001 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4700-7fc9c9d71feddbb76d8c521cbd25c448877910fc8f7ba39e50cfe31eaa0b09993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1522-2683%28200110%2922%3A18%3C3930%3A%3AAID-ELPS3930%3E3.0.CO%3B2-Q$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1522-2683%28200110%2922%3A18%3C3930%3A%3AAID-ELPS3930%3E3.0.CO%3B2-Q$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11700723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mogensen, Klaus B.</creatorcontrib><creatorcontrib>Petersen, Nickolaj J.</creatorcontrib><creatorcontrib>Hübner, Jörg</creatorcontrib><creatorcontrib>Kutter, Jörg P.</creatorcontrib><title>Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free‐space optics. A 750 νm long U‐shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U‐cell, tapering of the separation channel from a width of 120 down to 30 νm was employed. Electrical insulation was achieved by a 13 νm thermally grown silicon dioxide between the silicon substrate and the channels. The breakdown voltage during operation of the chip was measured to 10.6 kV. A separation of 3.2 νM rhodamine 110, 8 νM 2,7‐dichlorofluorescein, 10 νM fluorescein and 18 νM 5‐carboxyfluorescein was demonstrated on the device using the detection cell for absorption measurements at 488 nm.</description><subject>Absorption detection</subject><subject>Capillary electrophoresis</subject><subject>Electrophoresis, Capillary - instrumentation</subject><subject>Equipment Design</subject><subject>Feasibility Studies</subject><subject>Fluorescein - analysis</subject><subject>Fluoresceins - analysis</subject><subject>Fluorescent Dyes - analysis</subject><subject>Fluorometry - instrumentation</subject><subject>Glass</subject><subject>Insulated channels</subject><subject>Microchemistry - instrumentation</subject><subject>Micrototal analysis systems</subject><subject>Rhodamines - analysis</subject><subject>Silicon</subject><subject>Waveguides</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkUFvEzEQhVcIRNPCX0B7QnDYMLZ343WokEpoS6WUNKIIwWXk9c62Lpt1am9a-u9xSAgnDpys8XzzZvRekhwyGDIA_oYVnGd8VIpXHIAxeM35mJWHQgkYj4_OPmTH04vP6-qdGMJwMnvLs_mjZLAbe5wMgEmRQSmKvWQ_hBsAyFWeP032GJMAkotBsjx3nWttf21NaruerrzuretS16Ru2Vuj2_Re39HVytYU0sb5VFfB-Up3htKaejK_cdulC2u8a3Tl41BPdUpt7Hm3vHaegg0RvrOGwrPkSaPbQM-370Hy5eT4cvIxm85OzyZH08zk8bZMNkYZVUvWUF1XlRzVpSk4M1XNC5PnZSmlYtCYspGVFooKMA0JRlpDBUopcZC83OguvbtdUehxYYOhttUduVVAyflIjUBE8HIDxvND8NTg0tuF9g_IANdJ4NpSXFuKmyQwlqzEtfeIMQn8kwQKBJzMkOM8yr7Y7l9VC6r_im6tj8C3DXBvW3r4r6X_2Ln7i9rZRtuGnn7utLX_gSMpZIFfP50iOz-Zv__OLlCJX1JEtaE</recordid><startdate>200110</startdate><enddate>200110</enddate><creator>Mogensen, Klaus B.</creator><creator>Petersen, Nickolaj J.</creator><creator>Hübner, Jörg</creator><creator>Kutter, Jörg P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200110</creationdate><title>Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices</title><author>Mogensen, Klaus B. ; Petersen, Nickolaj J. ; Hübner, Jörg ; Kutter, Jörg P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4700-7fc9c9d71feddbb76d8c521cbd25c448877910fc8f7ba39e50cfe31eaa0b09993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Absorption detection</topic><topic>Capillary electrophoresis</topic><topic>Electrophoresis, Capillary - instrumentation</topic><topic>Equipment Design</topic><topic>Feasibility Studies</topic><topic>Fluorescein - analysis</topic><topic>Fluoresceins - analysis</topic><topic>Fluorescent Dyes - analysis</topic><topic>Fluorometry - instrumentation</topic><topic>Glass</topic><topic>Insulated channels</topic><topic>Microchemistry - instrumentation</topic><topic>Micrototal analysis systems</topic><topic>Rhodamines - analysis</topic><topic>Silicon</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mogensen, Klaus B.</creatorcontrib><creatorcontrib>Petersen, Nickolaj J.</creatorcontrib><creatorcontrib>Hübner, Jörg</creatorcontrib><creatorcontrib>Kutter, Jörg P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mogensen, Klaus B.</au><au>Petersen, Nickolaj J.</au><au>Hübner, Jörg</au><au>Kutter, Jörg P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2001-10</date><risdate>2001</risdate><volume>22</volume><issue>18</issue><spage>3930</spage><epage>3938</epage><pages>3930-3938</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free‐space optics. A 750 νm long U‐shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U‐cell, tapering of the separation channel from a width of 120 down to 30 νm was employed. Electrical insulation was achieved by a 13 νm thermally grown silicon dioxide between the silicon substrate and the channels. The breakdown voltage during operation of the chip was measured to 10.6 kV. A separation of 3.2 νM rhodamine 110, 8 νM 2,7‐dichlorofluorescein, 10 νM fluorescein and 18 νM 5‐carboxyfluorescein was demonstrated on the device using the detection cell for absorption measurements at 488 nm.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>11700723</pmid><doi>10.1002/1522-2683(200110)22:18<3930::AID-ELPS3930>3.0.CO;2-Q</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2001-10, Vol.22 (18), p.3930-3938 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_72269603 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Absorption detection Capillary electrophoresis Electrophoresis, Capillary - instrumentation Equipment Design Feasibility Studies Fluorescein - analysis Fluoresceins - analysis Fluorescent Dyes - analysis Fluorometry - instrumentation Glass Insulated channels Microchemistry - instrumentation Micrototal analysis systems Rhodamines - analysis Silicon Waveguides |
title | Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithic%20integration%20of%20optical%20waveguides%20for%20absorbance%20detection%20in%20microfabricated%20electrophoresis%20devices&rft.jtitle=Electrophoresis&rft.au=Mogensen,%20Klaus%20B.&rft.date=2001-10&rft.volume=22&rft.issue=18&rft.spage=3930&rft.epage=3938&rft.pages=3930-3938&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/1522-2683(200110)22:18%3C3930::AID-ELPS3930%3E3.0.CO;2-Q&rft_dat=%3Cproquest_cross%3E72269603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72269603&rft_id=info:pmid/11700723&rfr_iscdi=true |