Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices

The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrophoresis 2001-10, Vol.22 (18), p.3930-3938
Hauptverfasser: Mogensen, Klaus B., Petersen, Nickolaj J., Hübner, Jörg, Kutter, Jörg P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3938
container_issue 18
container_start_page 3930
container_title Electrophoresis
container_volume 22
creator Mogensen, Klaus B.
Petersen, Nickolaj J.
Hübner, Jörg
Kutter, Jörg P.
description The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free‐space optics. A 750 νm long U‐shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U‐cell, tapering of the separation channel from a width of 120 down to 30 νm was employed. Electrical insulation was achieved by a 13 νm thermally grown silicon dioxide between the silicon substrate and the channels. The breakdown voltage during operation of the chip was measured to 10.6 kV. A separation of 3.2 νM rhodamine 110, 8 νM 2,7‐dichlorofluorescein, 10 νM fluorescein and 18 νM 5‐carboxyfluorescein was demonstrated on the device using the detection cell for absorption measurements at 488 nm.
doi_str_mv 10.1002/1522-2683(200110)22:18<3930::AID-ELPS3930>3.0.CO;2-Q
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72269603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72269603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4700-7fc9c9d71feddbb76d8c521cbd25c448877910fc8f7ba39e50cfe31eaa0b09993</originalsourceid><addsrcrecordid>eNqVkUFvEzEQhVcIRNPCX0B7QnDYMLZ343WokEpoS6WUNKIIwWXk9c62Lpt1am9a-u9xSAgnDpys8XzzZvRekhwyGDIA_oYVnGd8VIpXHIAxeM35mJWHQgkYj4_OPmTH04vP6-qdGMJwMnvLs_mjZLAbe5wMgEmRQSmKvWQ_hBsAyFWeP032GJMAkotBsjx3nWttf21NaruerrzuretS16Ru2Vuj2_Re39HVytYU0sb5VFfB-Up3htKaejK_cdulC2u8a3Tl41BPdUpt7Hm3vHaegg0RvrOGwrPkSaPbQM-370Hy5eT4cvIxm85OzyZH08zk8bZMNkYZVUvWUF1XlRzVpSk4M1XNC5PnZSmlYtCYspGVFooKMA0JRlpDBUopcZC83OguvbtdUehxYYOhttUduVVAyflIjUBE8HIDxvND8NTg0tuF9g_IANdJ4NpSXFuKmyQwlqzEtfeIMQn8kwQKBJzMkOM8yr7Y7l9VC6r_im6tj8C3DXBvW3r4r6X_2Ln7i9rZRtuGnn7utLX_gSMpZIFfP50iOz-Zv__OLlCJX1JEtaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>72269603</pqid></control><display><type>article</type><title>Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Mogensen, Klaus B. ; Petersen, Nickolaj J. ; Hübner, Jörg ; Kutter, Jörg P.</creator><creatorcontrib>Mogensen, Klaus B. ; Petersen, Nickolaj J. ; Hübner, Jörg ; Kutter, Jörg P.</creatorcontrib><description>The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free‐space optics. A 750 νm long U‐shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U‐cell, tapering of the separation channel from a width of 120 down to 30 νm was employed. Electrical insulation was achieved by a 13 νm thermally grown silicon dioxide between the silicon substrate and the channels. The breakdown voltage during operation of the chip was measured to 10.6 kV. A separation of 3.2 νM rhodamine 110, 8 νM 2,7‐dichlorofluorescein, 10 νM fluorescein and 18 νM 5‐carboxyfluorescein was demonstrated on the device using the detection cell for absorption measurements at 488 nm.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/1522-2683(200110)22:18&lt;3930::AID-ELPS3930&gt;3.0.CO;2-Q</identifier><identifier>PMID: 11700723</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Absorption detection ; Capillary electrophoresis ; Electrophoresis, Capillary - instrumentation ; Equipment Design ; Feasibility Studies ; Fluorescein - analysis ; Fluoresceins - analysis ; Fluorescent Dyes - analysis ; Fluorometry - instrumentation ; Glass ; Insulated channels ; Microchemistry - instrumentation ; Micrototal analysis systems ; Rhodamines - analysis ; Silicon ; Waveguides</subject><ispartof>Electrophoresis, 2001-10, Vol.22 (18), p.3930-3938</ispartof><rights>Copyright © 2001 WILEY‐VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4700-7fc9c9d71feddbb76d8c521cbd25c448877910fc8f7ba39e50cfe31eaa0b09993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F1522-2683%28200110%2922%3A18%3C3930%3A%3AAID-ELPS3930%3E3.0.CO%3B2-Q$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F1522-2683%28200110%2922%3A18%3C3930%3A%3AAID-ELPS3930%3E3.0.CO%3B2-Q$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11700723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mogensen, Klaus B.</creatorcontrib><creatorcontrib>Petersen, Nickolaj J.</creatorcontrib><creatorcontrib>Hübner, Jörg</creatorcontrib><creatorcontrib>Kutter, Jörg P.</creatorcontrib><title>Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices</title><title>Electrophoresis</title><addtitle>ELECTROPHORESIS</addtitle><description>The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free‐space optics. A 750 νm long U‐shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U‐cell, tapering of the separation channel from a width of 120 down to 30 νm was employed. Electrical insulation was achieved by a 13 νm thermally grown silicon dioxide between the silicon substrate and the channels. The breakdown voltage during operation of the chip was measured to 10.6 kV. A separation of 3.2 νM rhodamine 110, 8 νM 2,7‐dichlorofluorescein, 10 νM fluorescein and 18 νM 5‐carboxyfluorescein was demonstrated on the device using the detection cell for absorption measurements at 488 nm.</description><subject>Absorption detection</subject><subject>Capillary electrophoresis</subject><subject>Electrophoresis, Capillary - instrumentation</subject><subject>Equipment Design</subject><subject>Feasibility Studies</subject><subject>Fluorescein - analysis</subject><subject>Fluoresceins - analysis</subject><subject>Fluorescent Dyes - analysis</subject><subject>Fluorometry - instrumentation</subject><subject>Glass</subject><subject>Insulated channels</subject><subject>Microchemistry - instrumentation</subject><subject>Micrototal analysis systems</subject><subject>Rhodamines - analysis</subject><subject>Silicon</subject><subject>Waveguides</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkUFvEzEQhVcIRNPCX0B7QnDYMLZ343WokEpoS6WUNKIIwWXk9c62Lpt1am9a-u9xSAgnDpys8XzzZvRekhwyGDIA_oYVnGd8VIpXHIAxeM35mJWHQgkYj4_OPmTH04vP6-qdGMJwMnvLs_mjZLAbe5wMgEmRQSmKvWQ_hBsAyFWeP032GJMAkotBsjx3nWttf21NaruerrzuretS16Ru2Vuj2_Re39HVytYU0sb5VFfB-Up3htKaejK_cdulC2u8a3Tl41BPdUpt7Hm3vHaegg0RvrOGwrPkSaPbQM-370Hy5eT4cvIxm85OzyZH08zk8bZMNkYZVUvWUF1XlRzVpSk4M1XNC5PnZSmlYtCYspGVFooKMA0JRlpDBUopcZC83OguvbtdUehxYYOhttUduVVAyflIjUBE8HIDxvND8NTg0tuF9g_IANdJ4NpSXFuKmyQwlqzEtfeIMQn8kwQKBJzMkOM8yr7Y7l9VC6r_im6tj8C3DXBvW3r4r6X_2Ln7i9rZRtuGnn7utLX_gSMpZIFfP50iOz-Zv__OLlCJX1JEtaE</recordid><startdate>200110</startdate><enddate>200110</enddate><creator>Mogensen, Klaus B.</creator><creator>Petersen, Nickolaj J.</creator><creator>Hübner, Jörg</creator><creator>Kutter, Jörg P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200110</creationdate><title>Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices</title><author>Mogensen, Klaus B. ; Petersen, Nickolaj J. ; Hübner, Jörg ; Kutter, Jörg P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4700-7fc9c9d71feddbb76d8c521cbd25c448877910fc8f7ba39e50cfe31eaa0b09993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Absorption detection</topic><topic>Capillary electrophoresis</topic><topic>Electrophoresis, Capillary - instrumentation</topic><topic>Equipment Design</topic><topic>Feasibility Studies</topic><topic>Fluorescein - analysis</topic><topic>Fluoresceins - analysis</topic><topic>Fluorescent Dyes - analysis</topic><topic>Fluorometry - instrumentation</topic><topic>Glass</topic><topic>Insulated channels</topic><topic>Microchemistry - instrumentation</topic><topic>Micrototal analysis systems</topic><topic>Rhodamines - analysis</topic><topic>Silicon</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mogensen, Klaus B.</creatorcontrib><creatorcontrib>Petersen, Nickolaj J.</creatorcontrib><creatorcontrib>Hübner, Jörg</creatorcontrib><creatorcontrib>Kutter, Jörg P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mogensen, Klaus B.</au><au>Petersen, Nickolaj J.</au><au>Hübner, Jörg</au><au>Kutter, Jörg P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices</atitle><jtitle>Electrophoresis</jtitle><addtitle>ELECTROPHORESIS</addtitle><date>2001-10</date><risdate>2001</risdate><volume>22</volume><issue>18</issue><spage>3930</spage><epage>3938</epage><pages>3930-3938</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>The fabrication and performance of an electrophoretic separation chip with integrated optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps. The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free‐space optics. A 750 νm long U‐shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U‐cell, tapering of the separation channel from a width of 120 down to 30 νm was employed. Electrical insulation was achieved by a 13 νm thermally grown silicon dioxide between the silicon substrate and the channels. The breakdown voltage during operation of the chip was measured to 10.6 kV. A separation of 3.2 νM rhodamine 110, 8 νM 2,7‐dichlorofluorescein, 10 νM fluorescein and 18 νM 5‐carboxyfluorescein was demonstrated on the device using the detection cell for absorption measurements at 488 nm.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>11700723</pmid><doi>10.1002/1522-2683(200110)22:18&lt;3930::AID-ELPS3930&gt;3.0.CO;2-Q</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0173-0835
ispartof Electrophoresis, 2001-10, Vol.22 (18), p.3930-3938
issn 0173-0835
1522-2683
language eng
recordid cdi_proquest_miscellaneous_72269603
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Absorption detection
Capillary electrophoresis
Electrophoresis, Capillary - instrumentation
Equipment Design
Feasibility Studies
Fluorescein - analysis
Fluoresceins - analysis
Fluorescent Dyes - analysis
Fluorometry - instrumentation
Glass
Insulated channels
Microchemistry - instrumentation
Micrototal analysis systems
Rhodamines - analysis
Silicon
Waveguides
title Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T23%3A56%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithic%20integration%20of%20optical%20waveguides%20for%20absorbance%20detection%20in%20microfabricated%20electrophoresis%20devices&rft.jtitle=Electrophoresis&rft.au=Mogensen,%20Klaus%20B.&rft.date=2001-10&rft.volume=22&rft.issue=18&rft.spage=3930&rft.epage=3938&rft.pages=3930-3938&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/1522-2683(200110)22:18%3C3930::AID-ELPS3930%3E3.0.CO;2-Q&rft_dat=%3Cproquest_cross%3E72269603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=72269603&rft_id=info:pmid/11700723&rfr_iscdi=true