Inhibition of the rat blood–brain barrier choline transporter by manganese chloride
Choline transport has been characterized by multiple mechanisms including the blood–brain barrier (BBB), and high‐ and low‐affinity systems. Each mechanism has unique locations and characteristics yet retain some similarities. Previous studies have demonstrated cationic competition by monovalent cat...
Gespeichert in:
Veröffentlicht in: | Journal of neurochemistry 2001-11, Vol.79 (3), p.588-594 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 594 |
---|---|
container_issue | 3 |
container_start_page | 588 |
container_title | Journal of neurochemistry |
container_volume | 79 |
creator | Lockman, Paul R. Roder, Karen E. Allen, David D. |
description | Choline transport has been characterized by multiple mechanisms including the blood–brain barrier (BBB), and high‐ and low‐affinity systems. Each mechanism has unique locations and characteristics yet retain some similarities. Previous studies have demonstrated cationic competition by monovalent cations at the BBB and cation divalent manganese in the high‐affinity system. To evaluate the effects of divalent manganese inhibition as well as other cationic metals at the BBB choline transporter, brain choline uptake was evaluated in the presence of certain metals of interest in Fischer‐344 rats using the in situ brain perfusion technique. Brain choline uptake was inhibited in the presence of Cd2+ (73 ± 2%) and Mn2+ (44 ± 6%), whereas no inhibition was observed with Cu2+ and Al3+. Furthermore, it was found that manganese caused a reduction in brain choline uptake and significant regional choline uptake inhibition in the frontal and parietal cortex, the hippocampus and the caudate putamen (45 ± 3%, 68 ± 18%, 58 ± 9% and 46 ± 15%, respectively). These results suggest that choline uptake into the CNS can be inhibited by divalent cationic metals and monovalent cations. In addition, the choline transporter may be a means by which manganese enters the brain. |
doi_str_mv | 10.1046/j.1471-4159.2001.00589.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_72265041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>72265041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4759-1eead7b9cc4f2acdf3dcce2697448e590db5f491472944f9e3ec4ef288c4e97c3</originalsourceid><addsrcrecordid>eNqNkMtOAyEUhonRaL28gmGjuxmBYS4kbkzjNUY3uiYMc7A006HCNLY738E39ElkbKNLXR0C3znn50MIU5JSwouzaUp5SRNOc5EyQmhKSF6JdLmFRj8P22hECGNJRjjbQ_shTCNY8ILuoj1KS0LLgo3Q8203sbXtreuwM7ifAPaqx3XrXPP5_lF7ZTtcK-8teKwnrrUd4N6rLsyd7-NdvcIz1b2oDgJEoHXeNnCIdoxqAxxt6gF6vrp8Gt8k94_Xt-OL-0TzMhcJBVBNWQutuWFKNyZrtAZWiJLzCnJBmjo3XMQvMcG5EZCB5mBYVcUiSp0doNP13Ll3rwsIvZzZoKFtYxy3CLJkrMgJp3-CtMpyQUkVwWoNau9C8GDk3NuZ8itJiRzcy6kcFMtBsRzcy2_3chlbjzc7FvUMmt_GjewInGwAFbRqTbSobfjl4khS0SHs-Zp7sy2s_h1A3j2M4yH7AszboTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18359108</pqid></control><display><type>article</type><title>Inhibition of the rat blood–brain barrier choline transporter by manganese chloride</title><source>MEDLINE</source><source>Wiley Free Content</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Lockman, Paul R. ; Roder, Karen E. ; Allen, David D.</creator><creatorcontrib>Lockman, Paul R. ; Roder, Karen E. ; Allen, David D.</creatorcontrib><description>Choline transport has been characterized by multiple mechanisms including the blood–brain barrier (BBB), and high‐ and low‐affinity systems. Each mechanism has unique locations and characteristics yet retain some similarities. Previous studies have demonstrated cationic competition by monovalent cations at the BBB and cation divalent manganese in the high‐affinity system. To evaluate the effects of divalent manganese inhibition as well as other cationic metals at the BBB choline transporter, brain choline uptake was evaluated in the presence of certain metals of interest in Fischer‐344 rats using the in situ brain perfusion technique. Brain choline uptake was inhibited in the presence of Cd2+ (73 ± 2%) and Mn2+ (44 ± 6%), whereas no inhibition was observed with Cu2+ and Al3+. Furthermore, it was found that manganese caused a reduction in brain choline uptake and significant regional choline uptake inhibition in the frontal and parietal cortex, the hippocampus and the caudate putamen (45 ± 3%, 68 ± 18%, 58 ± 9% and 46 ± 15%, respectively). These results suggest that choline uptake into the CNS can be inhibited by divalent cationic metals and monovalent cations. In addition, the choline transporter may be a means by which manganese enters the brain.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1046/j.1471-4159.2001.00589.x</identifier><identifier>PMID: 11701762</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Science Ltd</publisher><subject>Animals ; Biological and medical sciences ; Blood-Brain Barrier - drug effects ; blood–brain barrier ; cadmium ; Cadmium - pharmacology ; Cations - pharmacology ; cerebrovascular ; Chemical and industrial products toxicology. Toxic occupational diseases ; Chlorides - pharmacology ; choline ; Choline - pharmacokinetics ; choline transporter ; Frontal Lobe - blood supply ; Male ; manganese ; Manganese Compounds - pharmacology ; Medical sciences ; Metals and various inorganic compounds ; Rats ; Rats, Inbred F344 ; Toxicology ; transporter ; Tritium</subject><ispartof>Journal of neurochemistry, 2001-11, Vol.79 (3), p.588-594</ispartof><rights>2002 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4759-1eead7b9cc4f2acdf3dcce2697448e590db5f491472944f9e3ec4ef288c4e97c3</citedby><cites>FETCH-LOGICAL-c4759-1eead7b9cc4f2acdf3dcce2697448e590db5f491472944f9e3ec4ef288c4e97c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1471-4159.2001.00589.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1471-4159.2001.00589.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14150811$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11701762$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lockman, Paul R.</creatorcontrib><creatorcontrib>Roder, Karen E.</creatorcontrib><creatorcontrib>Allen, David D.</creatorcontrib><title>Inhibition of the rat blood–brain barrier choline transporter by manganese chloride</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>Choline transport has been characterized by multiple mechanisms including the blood–brain barrier (BBB), and high‐ and low‐affinity systems. Each mechanism has unique locations and characteristics yet retain some similarities. Previous studies have demonstrated cationic competition by monovalent cations at the BBB and cation divalent manganese in the high‐affinity system. To evaluate the effects of divalent manganese inhibition as well as other cationic metals at the BBB choline transporter, brain choline uptake was evaluated in the presence of certain metals of interest in Fischer‐344 rats using the in situ brain perfusion technique. Brain choline uptake was inhibited in the presence of Cd2+ (73 ± 2%) and Mn2+ (44 ± 6%), whereas no inhibition was observed with Cu2+ and Al3+. Furthermore, it was found that manganese caused a reduction in brain choline uptake and significant regional choline uptake inhibition in the frontal and parietal cortex, the hippocampus and the caudate putamen (45 ± 3%, 68 ± 18%, 58 ± 9% and 46 ± 15%, respectively). These results suggest that choline uptake into the CNS can be inhibited by divalent cationic metals and monovalent cations. In addition, the choline transporter may be a means by which manganese enters the brain.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Blood-Brain Barrier - drug effects</subject><subject>blood–brain barrier</subject><subject>cadmium</subject><subject>Cadmium - pharmacology</subject><subject>Cations - pharmacology</subject><subject>cerebrovascular</subject><subject>Chemical and industrial products toxicology. Toxic occupational diseases</subject><subject>Chlorides - pharmacology</subject><subject>choline</subject><subject>Choline - pharmacokinetics</subject><subject>choline transporter</subject><subject>Frontal Lobe - blood supply</subject><subject>Male</subject><subject>manganese</subject><subject>Manganese Compounds - pharmacology</subject><subject>Medical sciences</subject><subject>Metals and various inorganic compounds</subject><subject>Rats</subject><subject>Rats, Inbred F344</subject><subject>Toxicology</subject><subject>transporter</subject><subject>Tritium</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkMtOAyEUhonRaL28gmGjuxmBYS4kbkzjNUY3uiYMc7A006HCNLY738E39ElkbKNLXR0C3znn50MIU5JSwouzaUp5SRNOc5EyQmhKSF6JdLmFRj8P22hECGNJRjjbQ_shTCNY8ILuoj1KS0LLgo3Q8203sbXtreuwM7ifAPaqx3XrXPP5_lF7ZTtcK-8teKwnrrUd4N6rLsyd7-NdvcIz1b2oDgJEoHXeNnCIdoxqAxxt6gF6vrp8Gt8k94_Xt-OL-0TzMhcJBVBNWQutuWFKNyZrtAZWiJLzCnJBmjo3XMQvMcG5EZCB5mBYVcUiSp0doNP13Ll3rwsIvZzZoKFtYxy3CLJkrMgJp3-CtMpyQUkVwWoNau9C8GDk3NuZ8itJiRzcy6kcFMtBsRzcy2_3chlbjzc7FvUMmt_GjewInGwAFbRqTbSobfjl4khS0SHs-Zp7sy2s_h1A3j2M4yH7AszboTU</recordid><startdate>200111</startdate><enddate>200111</enddate><creator>Lockman, Paul R.</creator><creator>Roder, Karen E.</creator><creator>Allen, David D.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200111</creationdate><title>Inhibition of the rat blood–brain barrier choline transporter by manganese chloride</title><author>Lockman, Paul R. ; Roder, Karen E. ; Allen, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4759-1eead7b9cc4f2acdf3dcce2697448e590db5f491472944f9e3ec4ef288c4e97c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Blood-Brain Barrier - drug effects</topic><topic>blood–brain barrier</topic><topic>cadmium</topic><topic>Cadmium - pharmacology</topic><topic>Cations - pharmacology</topic><topic>cerebrovascular</topic><topic>Chemical and industrial products toxicology. Toxic occupational diseases</topic><topic>Chlorides - pharmacology</topic><topic>choline</topic><topic>Choline - pharmacokinetics</topic><topic>choline transporter</topic><topic>Frontal Lobe - blood supply</topic><topic>Male</topic><topic>manganese</topic><topic>Manganese Compounds - pharmacology</topic><topic>Medical sciences</topic><topic>Metals and various inorganic compounds</topic><topic>Rats</topic><topic>Rats, Inbred F344</topic><topic>Toxicology</topic><topic>transporter</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lockman, Paul R.</creatorcontrib><creatorcontrib>Roder, Karen E.</creatorcontrib><creatorcontrib>Allen, David D.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lockman, Paul R.</au><au>Roder, Karen E.</au><au>Allen, David D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of the rat blood–brain barrier choline transporter by manganese chloride</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>2001-11</date><risdate>2001</risdate><volume>79</volume><issue>3</issue><spage>588</spage><epage>594</epage><pages>588-594</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>Choline transport has been characterized by multiple mechanisms including the blood–brain barrier (BBB), and high‐ and low‐affinity systems. Each mechanism has unique locations and characteristics yet retain some similarities. Previous studies have demonstrated cationic competition by monovalent cations at the BBB and cation divalent manganese in the high‐affinity system. To evaluate the effects of divalent manganese inhibition as well as other cationic metals at the BBB choline transporter, brain choline uptake was evaluated in the presence of certain metals of interest in Fischer‐344 rats using the in situ brain perfusion technique. Brain choline uptake was inhibited in the presence of Cd2+ (73 ± 2%) and Mn2+ (44 ± 6%), whereas no inhibition was observed with Cu2+ and Al3+. Furthermore, it was found that manganese caused a reduction in brain choline uptake and significant regional choline uptake inhibition in the frontal and parietal cortex, the hippocampus and the caudate putamen (45 ± 3%, 68 ± 18%, 58 ± 9% and 46 ± 15%, respectively). These results suggest that choline uptake into the CNS can be inhibited by divalent cationic metals and monovalent cations. In addition, the choline transporter may be a means by which manganese enters the brain.</abstract><cop>Oxford, UK</cop><pub>Blackwell Science Ltd</pub><pmid>11701762</pmid><doi>10.1046/j.1471-4159.2001.00589.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3042 |
ispartof | Journal of neurochemistry, 2001-11, Vol.79 (3), p.588-594 |
issn | 0022-3042 1471-4159 |
language | eng |
recordid | cdi_proquest_miscellaneous_72265041 |
source | MEDLINE; Wiley Free Content; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; Free Full-Text Journals in Chemistry |
subjects | Animals Biological and medical sciences Blood-Brain Barrier - drug effects blood–brain barrier cadmium Cadmium - pharmacology Cations - pharmacology cerebrovascular Chemical and industrial products toxicology. Toxic occupational diseases Chlorides - pharmacology choline Choline - pharmacokinetics choline transporter Frontal Lobe - blood supply Male manganese Manganese Compounds - pharmacology Medical sciences Metals and various inorganic compounds Rats Rats, Inbred F344 Toxicology transporter Tritium |
title | Inhibition of the rat blood–brain barrier choline transporter by manganese chloride |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20the%20rat%20blood%E2%80%93brain%20barrier%20choline%20transporter%20by%20manganese%20chloride&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Lockman,%20Paul%20R.&rft.date=2001-11&rft.volume=79&rft.issue=3&rft.spage=588&rft.epage=594&rft.pages=588-594&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1046/j.1471-4159.2001.00589.x&rft_dat=%3Cproquest_cross%3E72265041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=18359108&rft_id=info:pmid/11701762&rfr_iscdi=true |